Skip to main content

Assessment of viability in severely hypokinetic myocardium before revascularization and prediction of functional recovery: Contribution of thallium-201 imaging

  • Chapter
  • 62 Accesses

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 173))

Abstract

Myocardial imaging with thallium-201 (201T1) has been proposed and extensively used for the assessment of myocardial viability because tracer uptake and retention require tracer delivery through adequate perfusion, sarco-lemmal integrity and intact metabolic function. These three properties have been shown to be important requirements in order to permit recovery of systolic function after restoration of normal perfusion in dysfunctional myocardium. The aim of this chapter is to review the experimental studies providing a rationale for the use of 201T1 for viability studies and the clinical data suggesting that exercise and resting 201T1 imaging provide relevant information for the assessment of dysfunctional myocardium.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Strauss HW, Harrison K, Langan JK et al. Thallium-201 for myocardial imaging. Relation of thallium-201 to regional myocardial perfusion. Circulation 1975; 51: 641–5.

    PubMed  CAS  Google Scholar 

  2. Weich HP, Strauss HW, Pitt B. The extraction of thallium-201 by the myocardium. Circulation 1977; 56: 188–91.

    PubMed  CAS  Google Scholar 

  3. Melin JA, Becker LC. Quantitative relationship between global left ventricular thallium uptake and blood flow: Effects of propranolol, ouabain, dipyridamole and coronary artery occlusion. J Nucl Med 1986; 27: 641–52.

    PubMed  CAS  Google Scholar 

  4. Leppo JA. Myocardial uptake of thallium and rubidium during alterations in perfusion and oxygenation in isolated rabbit hearts. J Nucl Med 1987; 28: 878.

    PubMed  CAS  Google Scholar 

  5. Moore CA, Cannon J, Watson DD et al. Thallium 201 kinetics in stunned myocardium characterized by severe postischemic systolic dysfunction. Circulation 1990; 81: 1622–32.

    Article  PubMed  CAS  Google Scholar 

  6. Sinusas AJ, Watson DD, Cannon JM Jr, Beller GA. Effect of ischemia and postischemic dysfunction on myocardial uptake of technetium-99m-labeled methoxyisobutyl isonitrile and thallium-201. J Am Coll Cardiol 1989; 14: 1785–93.

    Article  PubMed  CAS  Google Scholar 

  7. Melin J, Becker L, Bulkley BH. Differences in thallium-201 uptake in reperfused and non reperfused myocardial infarction. Circulation Res 1983; 53: 414–19.

    PubMed  CAS  Google Scholar 

  8. Chu A, Murdock RH, Cobb FR. Relation betwen regional distribution of Thallium 201 and myocardial blood flow in normal, acutely ischemic and infarcted myocardium. Am J Cardiol 1982; 50: 1141–4.

    Article  PubMed  CAS  Google Scholar 

  9. Khaw Ban A, Strauss W, Pohost GM et al. Relation of immediate and delayed thallium-201 distribution to localization of Iodine-125 antimyosin antibody in acute experimental myocardial infarction. Am J Cardiol 1983; 51: 1428–32.

    Article  Google Scholar 

  10. Di Cola VC, Downing SE, Donabedian RK, Zaret BL. Pathophysiological correlates of thallium-201 myocardial uptake in experimental infarction. Cardiovasc Res 1977; 11: 141–6.

    Article  Google Scholar 

  11. Sochor H, Schwaiger M, Schelbert HR et al. Relationship between Tl-201, Tc-99m (Sn) pyrophosphate and F-18 2-deoxyglucose uptake in ischemically injured dog myocardium. Am Heart J 1987; 114: 1066–78.

    Article  PubMed  CAS  Google Scholar 

  12. Chappuis F, Meier B, Beienger J et al. Early assessment of tissue viability with radioiodin-ated heptadecanoic acid in reperfused canine myocardium: Comparison with thallium-201. Am Heart J 1990; 119: 833–41.

    Article  PubMed  CAS  Google Scholar 

  13. Forman R, Kirk ES. Thallium-201 accumulation during reperfusion of ischemic myocardium: Dependence on regional blood flow rather than viability. Am J Caridol 1984; 54: 659–63.

    Article  CAS  Google Scholar 

  14. Pohost GL, Zir L, Moore RH et al. Differentiation of transiently ischemic from infarcted myocardium by serial imaging after a single dose of thallium-201. Circulation 1977; 55: 294–302.

    PubMed  CAS  Google Scholar 

  15. Grunwald AM, Watson DD, Hozgrefe HHJ et al. Myocardial thallium-201 kinetics in normal and ischemic myocardium. Circulation 1981; 64: 610–8.

    Article  PubMed  CAS  Google Scholar 

  16. Pohost GM, Okada RD, O’Keffe DD et al. Thallium redistribution in dogs with severe coronary artery stenosis of fixed caliber. Circulation Research 1981; 48: 439–46.

    PubMed  CAS  Google Scholar 

  17. Melin JA, Wijns W, Keyeux A et al. Assessment of thallium-201 redistribution versus glucose uptake as predictors of viability after coronary occlusion and reperfusion. Circulation 1988; 77: 927–34.

    Article  PubMed  CAS  Google Scholar 

  18. Granato JE, Watson DD, Flanagan TL et al. Myocardial thallium-201 kinetics and regional flow alterations with 3 hours of coronary occlusion and either rapid reperfusion through a totally patent vessel or slow reperfusion through a critical stenosis. J Am Coll Cardiol 1987; 9: 109–18.

    Article  PubMed  CAS  Google Scholar 

  19. Granato JE, Watson DD, Flanagan TL et al. Myocardial thallium-201 kinetics during coronary occlusion and reperfusion: Influence of method of reflow and timing of thallium-201 administration. Circulation 1986; 73: 150–60.

    Article  PubMed  CAS  Google Scholar 

  20. Gewirtz H, Fischman AJ, Abraham S et al. Positron emission tomographic measurements of absolute regional myocardial blood flow permits identification of nonviable myocardium in patients with chronic myocardial infarction. J Am Coll Cardiol 1994; 23: 851–9.

    Article  PubMed  CAS  Google Scholar 

  21. Yamamoto Y, De Silva R, Rhodes CG et al. A new strategy for the assessment of viable myocardium and regional myocardial blood flow using 15O-water and dynamic positron emission tomography. Circulation 1992; 86: 167–78.

    PubMed  CAS  Google Scholar 

  22. Vanoverschelde JL, Melin JA, Bol A et al. Regional oxidative metabolism in patients after recovery from reperfused anterior myocardial infarction: Relation to regional blood flow and glucose uptake. Circulation 1992; 80: 1–11.

    Google Scholar 

  23. Vanoverschelde JL, Wijns W, Depré C et al. Mechanisms of chronic regional postischemic dysfunction in humans: New insights from the study of non-infarcted collateral dependent myocardium. Circulation 1993; 87: 1513–23.

    PubMed  CAS  Google Scholar 

  24. Reimer KA, Jennings RB. The “wavefront phenomenon” of myocardial ischemic cell death. Transmural progression of necrosis within the framework of ischemic bed size (myocardium at risk) and collateral flow. Lab Invest 1979; 40: 633–44.

    PubMed  CAS  Google Scholar 

  25. Jugdutt BI, Hutchins GM, Bulkley BM, Becker LC. Myocardial infarction in the conscious dog: Three-dimensional mapping of infarct, collateral flow and region at risk. Circulation 1979; 60: 1141–50.

    PubMed  CAS  Google Scholar 

  26. Gewirtz H, Beller GA, Strauss HW et al. Transient defects of resting thallium scans in patients with coronary artery disease. Circulation 1979; 59: 707–13.

    PubMed  CAS  Google Scholar 

  27. Berger BC, Watson DD, Burwell LR et al. Redistribution of thallium at rest in patients with stable and unstable angina and the effect of coronary artery bypass graft surgery. Circulation 1979; 60: 1114–25.

    PubMed  CAS  Google Scholar 

  28. Iskandrian AS, Hakki AH, Kane SA et al. Rest and redistribution thallium-201 myocardial scintigraphy to predict improvement in left ventricular function after coronary artery bypass grafting. Am J Cardiol 1983; 51: 1312–6.

    Article  PubMed  CAS  Google Scholar 

  29. Mori T, Minamiji K, Kurogane H et al. Rest-injected thallium-201 imaging for assessing viability of severe asynergic regions. J Nucl Med 1991; 32: 1718–24.

    PubMed  CAS  Google Scholar 

  30. Ragosta M, Beller GA, Watson DD et al. Quantitative planar rest-redistribution 201T1 imaging in detection of myocardial viability and prediction of improvement in left ventricular function after coronary bypass surgery in patients with severely depressed left ventricular function. Circulation 1993; 87: 1630–41.

    PubMed  CAS  Google Scholar 

  31. Alfieri O, La Canna G, Giubbini R et al. Recovery of myocardial infarction. The ultimate target of coronary revascularization. Eur J Cardio-thorac Surg 1993; 7: 325–30.

    CAS  Google Scholar 

  32. Marzullo P, Parodi O, Reisenhofer B et al. Value of rest thallium-201/technetium-99m sestamibi scans and dobutamine echocardiography for detecting myocardial viability. Am J Cardiol 1993; 71: 166–72.

    Article  PubMed  CAS  Google Scholar 

  33. Udelson JE, Coleman PS, Metherall J et al. Predicting recovery of severe regional ventricu¬lar dysfunction. Comparison of resting scintigraphy with 201T1 and 99mTc-Sestamibi. Circu¬lation 1994; 89: 2552–61.

    CAS  Google Scholar 

  34. Lomboy CT, Schulman DS, Grill HP et al. Rest-redistribution thallium-201 scintigraphy to determine myocardial viability early after myocardial infarction. J Am Coll Cardiol 1995; 25: 210–7.

    Article  PubMed  CAS  Google Scholar 

  35. Dilsizian V, Perrone-Filardi P, Arrighi JA et al. Concordance and discordance between stress-redistribution and rest-redistribution Thallium imaging for assessing viable myocar-dium. Comparison with metabolic activity by positron emission tomography. Circulation 1993; 88: 941–52.

    CAS  Google Scholar 

  36. Gibson RS, Watson DD, Taylor GJ et al. Prospective assessment of regional myocardial perfusion before and after coronary revascularization surgery by quantitative thallium-201 scintigraphy. J Am Coll Cardiol 1983; 1: 804–15.

    Article  PubMed  CAS  Google Scholar 

  37. Sabia PJ, Powers ER, Ragosta M et al. Role of quantiative planar thallium-201 imaging for determining viability in patients with acute myocardial infarction and a totally occluded infarct-related artery. J Nucl Med 1993; 34: 728–36.

    PubMed  CAS  Google Scholar 

  38. Yamamoto K, Asada S, Masuyama T et al. Myocardial hibernation in the infarcted region cannot be assessed from the presence of stress-induced ischemia: Usefulness of delayed image of exercise thallium-201 scintigraphy. Am Heart J 1993; 152: 33.

    Article  Google Scholar 

  39. Cloninger KG, DePuey EG, Garcia EV et al. Incomplete redistribution in delayed thallium-201 single photon emission computed tomographic (SPECT) images: An overestimation of myocardial scarring. J Am Coll Cardiol 1988; 12: 955–63.

    Article  PubMed  CAS  Google Scholar 

  40. Kiat H, Berman DS, Maddahi J et al. Later reversibility of tomographic myocardial thallium-201 defects: An accurate marker of myocardial viability. J Am Coll Cardiol 1988; 12: 1456–63.

    Article  PubMed  CAS  Google Scholar 

  41. Yang LD, Berman DS, Kiat H et al. The frequency of late reversibility in SPECT thallium-201 stress-redistribution studies. J Am Coll Cardiol 1990; 15: 334–40.

    Article  PubMed  CAS  Google Scholar 

  42. Dilsizian V, Rocco TP, Freeman NMT et al. Enhanced detection of ischemic but viable myocardium by the reinjection of thallium after stress-redistribution imaging. N Engl J Med 1990; 323: 141–6.

    Article  PubMed  CAS  Google Scholar 

  43. Brunken RC, Modi FV, Hawkins RA et al. Positron emission tomography detects metabolic viability in myocardium with persistent 24-hour single photon emission computed tomography 201–T1 defects. Circulation 1992; 86: 1357–69.

    PubMed  CAS  Google Scholar 

  44. Ohtani H, Tamaki N, Yonekura Y et al. Value of thallium-201 reinjection after delayed SPECT imaging for predicting reversible ischemia after coronary artery bypass grafting. Am J Cardiol 1990; 66: 394–9.

    Article  PubMed  CAS  Google Scholar 

  45. Tamaki N, Ohtani H, Yamshita K et al. Metabolic activity in the areas of new fill-in after thallium-201 reinjection: Comparison with positron emission tomography using fluorine-18-deoxyglucose. J Nucl Med 1991; 32: 673–8.

    PubMed  CAS  Google Scholar 

  46. Bonow RO, Dilsizian V, Cuocolo A, Bacharach SL. Identification of viable myocardium in patients with coronary artery disease and left ventricular dysfunction: Comparison of thallium scintigraphy with reinjection and PET imaging with 18F-fluorodeoxyglucose. Circulation 1991; 83: 26–37.

    PubMed  CAS  Google Scholar 

  47. Dilsizian V, Bonow RO. Differential uptake and apparent thallium-201 “washout” after thallium reinjection: options regarding early redistribution imaging before reinjection or after redistribution imaging after reinjection. Circulation 1992; 85: 1032–8.

    PubMed  CAS  Google Scholar 

  48. Zimmermann R, Mall G, Rauch B et al. Residual 201T1 activity in irreversible defects as a marker of myocardial viability. Clinicopathological study. Circulation 1995; 91: 1016–21.

    CAS  Google Scholar 

  49. Depré C, Vanoverschelde JL, Melin JA et al. Structural and metabolic correlates of the reversibility of chronic left ventricular ischemic dysfunction in humans. Am J Physiol 1995; 268: H1265–75.

    PubMed  Google Scholar 

  50. Marin-Neto JA, Dilsizian V, Arrighi JA et al. Thallium reinjection demonstrates viable myocardium in regions with reverse distribution. Circulation 1993; 88: 1736–41.

    PubMed  CAS  Google Scholar 

  51. Berman DS, Kiat H, Friedman JD et al. Separate acquisition rest thallium-201/stress tech-netium-99m sestamibi dual-isotope myocardial perfusion single-photon emission computed tomography: A clinical validation study. J Am Coll Cardiol 1993; 22: 1455–64.

    Article  PubMed  CAS  Google Scholar 

  52. Leon AR, Eisner RL, Martin SE et al. Comparison of single-photon emission computed tomographic (SPECT) myocardial perfusion imaging with thallium-201 and technetium-99m sestamibi in dogs. J Am Coll Cardiol 1992; 20: 1612–25.

    Article  PubMed  CAS  Google Scholar 

  53. Maublant JC, Marcaggi X, Lusson JR et al. Comparison between thallium-201 and tech-netium-99m methoxyisobutyl isonitrile defect size in single photon computed tomography at rest, exercise and redistribution in coronary artery disease. Am J Cardiol 1992; 69: 183–7.

    Article  PubMed  CAS  Google Scholar 

  54. Vanoverschelde JL, Marwick T, D’Hondt AM et al. Delineation of myocardial viability with low-dose dobutamine stress-echocardiography in patients with chronic ischemic left ventricular dysfunction. Circulation 1993; 88: 586.

    Google Scholar 

  55. Gerber BL, Vanoverschelde JL, Boi A et al. Comparison of Tl-201 SPECT and PET to predict viable myocardium in patients with ischemic left ventricular dysfunction. Eur J Nucl Med 1994; 21: 725.

    Google Scholar 

  56. Sansoy V, Glover DK, Watson DD et al. Comparison of thallium-201 resting redistribution with technetium-99m-sestamibi uptake and functional response to dobutamine for assess¬ment of myocardial viability. Circulation 1995; 92: 994–1004.

    PubMed  CAS  Google Scholar 

  57. Arnese M, Cornel JH, Salustri A et al. Prediction of improvement of regional left ventricular function after surgical revascularization. A comparison of low-dose dobutamine echocardiography with 201T1 single photon emission computed tomography. Circulation 1995; 91: 2748–52.

    PubMed  CAS  Google Scholar 

  58. Panza JA, Dilsizian V, Laurienzo JM et al. Relation between thallium uptake and contractile response to dobutamine. Implications regarding myocardial viability in patients with chronic coronary artery disease and left ventricular dysfunction. Circulation 1995; 91: 990–8.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Kluwer Academic Publishers

About this chapter

Cite this chapter

Melin, J.A., Vanoverschelde, JL., Gerber, B., Wijns, W. (1996). Assessment of viability in severely hypokinetic myocardium before revascularization and prediction of functional recovery: Contribution of thallium-201 imaging. In: Nienaber, C.A., Sechtem, U. (eds) Imaging and Intervention in Cardiology. Developments in Cardiovascular Medicine, vol 173. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0115-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0115-5_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6538-2

  • Online ISBN: 978-94-009-0115-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics