Advertisement

The Maximum-Entropy Method in Small-Angle Scattering

  • Steen Hansen
  • Jürgen J. Müller
Conference paper
Part of the Fundamental Theories of Physics book series (FTPH, volume 70)

Abstract

The Maximum-Entropy method is applied to the determination of the distance distribution function in small-angle scattering. Alternative methods for this purpose suffer from problems caused by their ad hoc nature, but the Maximum-Entropy method has a well established theoretical foundation offering several advantages. Examples are given using simulated as well as experimental data. It is demonstrated that the “best” (most likely) choice of parameters as e.g. the noise level, the model or the regularisation method in general can be found from the evidence in a Bayesian framework.

Keywords

Maximum Entropy Bayesian Method Smoothness Constraint Scatter Length Density Maxent Estimate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Arnott S.,D.W.L. Hukins, Dover S.D.:1972, ‘Optimized Parameters for RNA Double Helices’, Biochem. Biophys. Res. Commun. 48, 1392–1399.CrossRefGoogle Scholar
  2. [2]
    Brunel Ch.,Romby P.,Westhof E., Ehresmann Ch., Ehresmann B.: 1991, ‘Three-dimensional Model of Escherichia coli Ribosomal 5S RNA as Deduced from Structure Probing in Solution and Computer Modelling’, J Mol. Biol.221, 293–308.CrossRefGoogle Scholar
  3. [3]
    Bryan, R.K.: 1990, ‘Maximum entropy analysis of oversampled data problems’, Eur. Biophys. J18, 165–174.MathSciNetCrossRefGoogle Scholar
  4. [4]
    Charter, M.K., and Gull, S.F.: 1991, ‘Maximum Entropy and Drug Absorption’,J. Pharmacokin. Biopharm19, 497–520.CrossRefGoogle Scholar
  5. [5]
    Damaschun, G., Müller, J.J., Bielka, H.: 1979, ‘Scattering Studies of Ribosomes and Ribosomal Components’ Methods in Enzymology59, 706–750.CrossRefGoogle Scholar
  6. [6]
    Potton, J. A., Daniell, G. J. & Rainford, B. D.: 1988a, ‘Particle Size Distributions from SANS Using th Maximum Entropy Method’, J. Appl. Cryst.21, 663–668.CrossRefGoogle Scholar
  7. [7]
    Potton, J. A., Daniell, G. J. & Rainford, B. D.: 1988b, ‘A New Method for the Determination of Particle Size Distributions from Small-Angle Neutron Scattering’, J. Appl. Cryst21, 891–897.CrossRefGoogle Scholar
  8. [8]
    Hansen, S. & Pedersen, J. S.: 1991, ‘A Comparison of Three Different Methods for Analysing Small-Angle Scattering Data’, J. Appl. Cryst24, 541–548.CrossRefGoogle Scholar
  9. [9]
    Hansen, S. & Wilkins, S. W.: 1994, ‘On uncertainty in maximum-entropy maps and the generalization of ’classic MaxEnt”, Acta CrystA50, 547–550.Google Scholar
  10. [10]
    Glatter, O.: 1977, ‘A New Method for the Evaluation of Small-Angle Scattering Data’,J. Appl. Cryst10, 415–421.CrossRefGoogle Scholar
  11. [11]
    Glatter, O.: 1982, In Small Angle X-ray Scattering, edited by O. Glatter and O. Kratky. Academic Press, LondonGoogle Scholar
  12. [12]
    Gull, S.F.: 1989, ‘Developments in Maximum Entropy Data Analysis’, in Maximum-Entropy and Bayesian Methods, edited by J. Skilling, pp. 53–71. Dordrecht: Kluwer Academic Publishers.Google Scholar
  13. MacKay, D.J.C.: 1992, ’Bayesian Interpolation’, in Maximum Entropy and Bayesian Methods, Seattle 1991, edited by C.R.Smith et al, pp. 39–66. Kluwer Academic Publishers, Netherlands.Google Scholar
  14. [14]
    May, R. P. & Nowotny, V. (1989). ‘Distance Information Derived from Neutron Low-Q Scattering’ J. Appl. Cryst22, 231–237.CrossRefGoogle Scholar
  15. [15]
    Moore, P. B. (1980). ’Small-Angle Scattering. Information Content and Error Analysis’ J. Appl. Cryst13, 168–175.CrossRefGoogle Scholar
  16. [16]
    Morrison, J. D., Corcoran, J. D. & Lewis, K. E.: 1992, ‘The Determination of Particle Size Distributions in Small-Angle Scattering Using the Maximum-Entropy Method’, J. Appl. Cryst25, 504–513.CrossRefGoogle Scholar
  17. [17]
    Müller, J.J., &Zalkova, T.N., Zirwe, D., Misselwits, R., Gast K., Seryuk I.N., Welfle H., Damaschun, G.: 1986,‘Comparison of the structure of ribosomal 5S RNA from E. coli and from rat liver using X-ray scattering and dynamic light scattering’, Eur.Biophys. J. 13 301–307.CrossRefGoogle Scholar
  18. [18]
    Müller, J.J. & Hansen, S.: 1994,‘A Study of High-Resolution X-ray Scattering Data Evaluation by the Maximum-Entropy Method’, J. Appl. Cryst. 27 257–270.CrossRefGoogle Scholar
  19. [19]
    Skiling, J.: 1988, ‘ The Axioms of Maximum Entropy’Maximum-Entropy and Bayesian Method in Science and Engineering (Vol 1), edited by G.J. Erickson and C. Ray Smith, pp. 173–187. Kluwer Academic Publishers, Dordrecht.Google Scholar
  20. [20]
    Skilling, J.: 1988, ‘Classical Maximum Entropy’, in Maximum- Entropy and Bayesian Methods, edited by J. Skilling, pp. 42–52. Kluwer Academic Publishers, Dordrecht.Google Scholar
  21. [21]
    Skilling, J.: 1991, ‘On parameter estimation and quantified MaxEnt’ in Maximum-Entropy and Bayesian Methods, edited by Grandy and Schick, pp. 267–273. Kluwer Academic Publisher, Dordrecht.CrossRefGoogle Scholar
  22. [22]
    Steenstrup, s. & Hansen, S.: 1994,’The Maximum-Entropy Method without the Positivity Constraint ‘ Applications to the Determination of the Distance-Distribution Function in Small-Angel Scattering’, J. Appl. Cryst. 25, 574–580.CrossRefGoogle Scholar
  23. [23]
    Svergun, D. I.: 1992,‘Determination of the Regularization Parameter in Indirect-Transform Methods Using Perceptual Criteria’, J Appl. Cryst. 25, 495–503.CrossRefGoogle Scholar
  24. [24]
    Svergun, D.I., Semenyuk, A.V & Feigin, L.A.: 1988,‘Small-Angle Scattering-Data Treatment Method’, Acta Cryst. A44, 244–250.Google Scholar
  25. [25]
    Tikhonov, A.N. & Arsenin, V.Ya.: 1977, in Solution of Il-Posed Problems, New York: Wiley.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • Steen Hansen
    • 1
  • Jürgen J. Müller
    • 2
  1. 1.Department of Mathematics and PhysicsRoyal Veterinary and Agricultural UniversityFRB CDenmark
  2. 2.Max-Delbrück-Center for Molecular MedicineBerlinGermany

Personalised recommendations