Advertisement

Using MaxEnt to Determine Nuclear Level Densities

  • N. J. Davidson
  • B. J. Cole
  • H. G. Miller
Conference paper
  • 282 Downloads
Part of the Fundamental Theories of Physics book series (FTPH, volume 70)

Abstract

Calculations involving excited nuclei often require knowledge of the nuclear many-body density of states in regions where the analytic dependence of this quantity on the energy is not well known. We show, by means of a model calculation, that it should be possible to satisfactorily infer the energy dependence of the nuclear level density for a reasonable range of energies by use of the Maximum Entropy Principle. The prior information required is the observed number of states per energy interval at comparatively low energies, where the experimental nuclear spectra are well known. Our results suggest that the proposed method is sufficiently reliable to allow for the calculation of thermal properties of nuclei (through the partition function) over a reasonable temperature range.

Keywords

Partition Function Level Density Maximum Entropy Principle Level Density Parameter Nuclear Level Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. A. Bethe, Phys. Rev. 50, 332 (1936).CrossRefzbMATHGoogle Scholar
  2. [2]
    H. A. Bethe, Rev. Mod. Phys. 9, 69 (1937).CrossRefzbMATHGoogle Scholar
  3. [3]
    H. A. Bethe, Phys. Rev. 53, 675 (1938).Google Scholar
  4. [4]
    C. Bloch, Phys. Rev. 93, 1094 (1954).CrossRefzbMATHGoogle Scholar
  5. [5]
    J. M. B. Lang and K. J. LeCouteur, Proc. Phys. Soc. (London) A67, 586 (1954).Google Scholar
  6. [6]
    T. E. Ericson, Adv. Phys. 9, 425 (1960).Google Scholar
  7. [7]
    D. H. E. Gross and R. Heck, Phys. Lett. B 318, 405 (1993).Google Scholar
  8. [8]
    E. Erba, U. Facchinni, and E. Saetta-Menichella, Nuov. Cim. 22, 1237 (1961).CrossRefGoogle Scholar
  9. [9]
    B.J. Cole,N.J. Davidson and H.G. Miller Phys. Rev. C. in pressGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • N. J. Davidson
    • 1
  • B. J. Cole
    • 2
  • H. G. Miller
    • 3
  1. 1.Department of MathematicsUniversity of Manchester Institute of Science and Technology (UMIST)ManchesterUK
  2. 2.Department of PhysicsUniversity of the WitwatersrandWitsSouth Africa
  3. 3.Department of PhysicsUniversity of PretoriaPretoriaSouth Africa

Personalised recommendations