Advertisement

Bayesian Consideration of the Tomography Problem

  • W. von der Linden
  • K. Ertl
  • V. Dose
Conference paper
  • 282 Downloads
Part of the Fundamental Theories of Physics book series (FTPH, volume 70)

Abstract

Soft X-ray tomography has become a standard diagnostic equipment to investigate plasma profiles. Due to limitations in viewing-access and detector numbers the reconstruction of the two-dimensional emissivity profile constitutes a highly underdetermined inversion problem. We discuss the principle features of the tomography problem from the Bayesian point of view in various stages of sophistication. The approach is applied to real-world data obtained from the Wendelstein 7AS stellerator.

Keywords

Maximum Entropy Emissivity Profile Tomography Problem Default Model Effective Atomic Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. [1]
    A.P.Navarro, V.K. Paré, and J.L. Dunlap, Rev.Sci.Instrum. 52, 1634 (1981)CrossRefGoogle Scholar
  2. [2]
    R.S. Granetz and J. Camacho, Nucl. Fusion 25, 727 (1985).CrossRefGoogle Scholar
  3. [3]
    J. Camacho and R.S. Granetz, Rev.Sci.Instrum. 57, 417 (1986).CrossRefGoogle Scholar
  4. [4]
    N.R. Sauthoff,K.M. McGuire, and S. von Goeler, Rev.Sci.Instrum. 57, 2139 (1986).CrossRefGoogle Scholar
  5. [5]
    E.T. Jaynes, (1958).Google Scholar
  6. [6]
    S.F. Gull, in Maximum Entropy and Bayesian Methodsed. J. Skilling, (Kluwer, Academic Publishers, 1989 ).Google Scholar
  7. [7]
    J. Skilling, in Maximum Entropy and Bayesian Methodsed. P. F. Fougère, (Kluwer, Academic Publishers, 1990 ).Google Scholar
  8. [8]
    R. Silver, in Maximum Entropy and Bayesian Methods ed. G. Heidbreder, (Kluwer, Academic Publishers, 1993), to be published.Google Scholar
  9. [9]
    B. Roy Frieden, J. Opt.Soc.Am. 62, 511 (1972)CrossRefGoogle Scholar
  10. [10]
    G.A.Cottrell, in Maximum Entropy in Action, ed. B. Buck and V. A. Macaulay, (Oxford Science Publications,Oxford 1990)Google Scholar
  11. [11]
    A. Holland and G.A.Navrati, Rev.Sci.Instrum. 57, 1557 (1986).CrossRefGoogle Scholar
  12. [12]
    K. Bockasten, J.Opt.Soc.Amer. 51, 943 (1961).CrossRefGoogle Scholar
  13. [13]
    N.R. SauthofT, S. von Goeler, and W. Stodiek, Nucl. Fusion 18, 1445 (1978).CrossRefGoogle Scholar
  14. [14]
    N.R. SauthofT and S. von Goeler, IEEE Trans.Plasma.Sci. 7, 141 (1979).CrossRefGoogle Scholar
  15. [15]
    A.P. Navarro, M.A. Ochando, and A. Weiler, IEEE Trans, on Plasma Science 19, 569 (1991).CrossRefGoogle Scholar
  16. [16]
    R. Decoste, Rev.Sci.Instrum. 56, 807 (1985).CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • W. von der Linden
    • 1
  • K. Ertl
    • 1
  • V. Dose
    • 1
  1. 1.Max-Planck-Institut für PlasmaphysikEURATOM AssociationGarching b. MünchenGermany

Personalised recommendations