Advertisement

The Vital Importance of Prior Information for the Decomposition of Ion Scattering Spectroscopy Data

  • R. Fischer
  • W. von der Linden
  • V. Dose
Conference paper
  • 282 Downloads
Part of the Fundamental Theories of Physics book series (FTPH, volume 70)

Abstract

The ubiquitous spectroscopic problem of decomposing overlapping lines is solved for ion scattering spectroscopy employing Maximum Entropy. The chosen example of Pd adsorption on a Ru surface is particularly challenging because 13 partially overlapping isotopes contribute to the total scattering signal. Proper decomposition using appropriate prior information enables accurate coverage determination.

Keywords

Maximum Entropy Default Model Single Isotope Inelastic Energy Loss Inelastic Loss 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E. Taglauer, “Investigation of the Local Atomic Arrangement on Surfaces Using Low-Energy Ion Scattering”Appl Phys, Vol. A 38,pp: 161–170, 1985.Google Scholar
  2. [2]
    W. von der Linden, M. Donath and V. Dose, “Unbiased Access to Exchange Splitting of Magnetic Bands Using the Maximum Entropy Method”, Phys. Rev. Lett., Vol. 71,pp: 899–902, 1993.CrossRefGoogle Scholar
  3. [3]
    J. N. Kapur, “Maximum-Entropy Models in Science and Engineering”, Wiley, New York, 1989.zbMATHGoogle Scholar
  4. [4]
    G. J. Danieli, “Of Maps and Monkeys: an Introduction to the Maximum Entropy Method”, in: “Maximum Entropy in Action”, Eds. B. Buck and V. A. Macaulay, Oxford University Press Inc., New York, p: 1, 1991.Google Scholar
  5. [5]
    P. W. Anderson, “The Reverend Thomas Bayes, Needles in Haystacks, and the Fifth Force” Phys. Today, Vol. 45 (Jan.),pp: 9–11, 1992.Google Scholar
  6. [6]
    Th. Fauster, “Surface geometry determination by large-angle ion scattering”, Vacuum, Vol. 38,pp: 129–142, 1988.CrossRefGoogle Scholar
  7. [7]
    S. F. Gull, “Developments in Maximum Entropy Data Analysis”, in: “Maximum Entropy and Bayesian Methods”, Eds. J. Skilling, Kluwer Academic Publishers, Norwell, MA, pp: 53–71, 1989.Google Scholar
  8. [8]
    J. Skilling, “Quantified Maximum Entropy”, in: “Maximum Entropy and Bayesian Methods”, Eds. P. F. Fougère, Kluwer Academic Publishers, Norwell, MA, p: 341, 1990.CrossRefGoogle Scholar
  9. [9]
    S. F. Gull and J. Skilling, “Maximum entropy method in image processing”, IEE Proc, Vol. 131 F,pp: 646–659, 1984.Google Scholar
  10. [10]
    L.R. Mead and N. Papanicolaou, “Maximum entropy in the problem of moments”, J. Math. Phys., Vol. 25 (8),pp: 2404–2417, 1984MathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    N. Memmel et al., unpublished.Google Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • R. Fischer
    • 1
  • W. von der Linden
    • 1
  • V. Dose
    • 1
  1. 1.Max-Planck-Institut für PlasmaphysikEURATOM AssociationGarchingGermany

Personalised recommendations