Advertisement

Entropies for Continua: Fluids and Magnetofluids

  • D. Montgomery
  • X. Shan
  • W. H. Matthaeus
Conference paper
Part of the Fundamental Theories of Physics book series (FTPH, volume 70)

Abstract

The greatest single use of maximum entropy methods at present seems to be in situations related to data analysis. However, for over twenty years, it has also appeared that considerations of maximum entropy might have dynamical implications for dissipative continuum mechanics that go beyond the class of statements that can be made from the traditional statistical mechanics of discrete particles. Inquiry into the extent to which a meaningfully increasing entropy can be defined for an evolving dissipative continuum has been to a considerable degree an “experimental” investigation, with numerical solution of the relevant dynamical equations (e.g., Navier-Stokes, magnetohydrodynamic, geostrophic, or plasma “drift” equations) as the relevant experimental tool. Here, we review various suggested formulations and the accumulated numerical evidence. We also suggest theoretical and computational problems currently thought to be potentially illuminating and ripe for solution.

Keywords

Stream Function Maximum Entropy Maximum Entropy Method Vorticity Distribution Hyperbolic Sine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    E.T. Jaynes, Phys. Rev. 106, 620 (1957) and 108, 171 (1957).MathSciNetCrossRefGoogle Scholar
  2. [2]
    E.T. Jaynes, Phys. Rev. 106, 620 (1957) and 108, 171 (1957).MathSciNetCrossRefGoogle Scholar
  3. [3]
    e.g., R.H. Kraichnan and D. Montgomery, Repts. on Progress in Physics43, 547 (1980).MathSciNetCrossRefGoogle Scholar
  4. [4]
    C. C. Lin, “On the Motion of Vortices in Two Dimensions” ( University of Toronto Press, Toronto, 1943 ).zbMATHGoogle Scholar
  5. [5]
    L. Onsager, Nuovo Cimento Suppl. 6, 279 (1949).MathSciNetCrossRefGoogle Scholar
  6. [6]
    G. Joyce and D. Montgomery, J. Plasma Phys10, 107 (1973).CrossRefGoogle Scholar
  7. [7]
    D. Montgomery and G. Joyce, Phys. Fluids17, 1139 (1974)MathSciNetCrossRefGoogle Scholar
  8. [8]
    C.E. Seyler, Jr., Phys. Rev. Lett. 32, 515 (1974) and Phys. Fluids19, 1336 (1976).CrossRefGoogle Scholar
  9. [9]
    C.E. Seyler, Jr., Phys. Rev. Lett. 32, 515 (1974) and Phys. Fluids19, 1336 (1976).CrossRefGoogle Scholar
  10. [10]
    B.E. McDonald, J. Comp. Phys16, 630 (1974).CrossRefGoogle Scholar
  11. [11]
    D.L. Book, S. Fisher, and B.E. McDonald, Phys. Rev. Lett34, 4 1975.CrossRefGoogle Scholar
  12. [12]
    Y.B. Pointin and T.S. Lundgren, Phys. Fluids19, 1459 (1976).zbMATHCrossRefGoogle Scholar
  13. [13]
    T.S. Lundgren and Y.B. Pointin, Phys. Fluids20, 356 (1977).MathSciNetzbMATHCrossRefGoogle Scholar
  14. [14]
    T.S. Lundgren and Y.B. Pointin, J. Stat. Phys17, 323 (1978).CrossRefGoogle Scholar
  15. [15]
    J.H. Williamson, J. Plasma Phys17, 85 (1977).CrossRefGoogle Scholar
  16. [16]
    G.A. Kriegsmann and E.L Reiss, Phys. Fluids21, 258 (1978).MathSciNetCrossRefGoogle Scholar
  17. [17]
    A.C. Ting, H.H. Chen, and Y.C. Lee, PhysicaD 26, 37 (1987).MathSciNetzbMATHCrossRefGoogle Scholar
  18. [18]
    R.A. Smith, Phys. Rev. Lett63, 1479 (1989).CrossRefGoogle Scholar
  19. [19]
    R.A. Smith and T. O’Neil, Phys. FluidsB 2, 2961 (1990).CrossRefGoogle Scholar
  20. [20]
    R.A. Smith, Phys. Rev. A 43, 1126 (1991).Google Scholar
  21. [21]
    L.J. Campbell and K. O’Neill, J. Stat. Phys65, 495 (1991).zbMATHCrossRefGoogle Scholar
  22. [22]
    D. Montgomery, in “Maximum-Entropy and Bayesian Methods in Inverse Problems,” ed. by C. Ray Smith and W.T. Grandy, Jr. D. Reidel, Dordrecht, 1985. pp. 455 ff.Google Scholar
  23. [23]
    W.H. Matthaeus, W. Stribling, D. Martinez, S. Oughton, and D. Montgomery, Phys Rev. Lett66, 2731 (1991).zbMATHCrossRefGoogle Scholar
  24. [24]
    W.H. Matthaeus, W.T. Stribling, D. Martinez, S. Oughton, and D. Montgomery, Physica D51, 531 (1991).zbMATHCrossRefGoogle Scholar
  25. [25]
    D. Gottlieb and S.A. Orszag, “Numerical Analysis of Spectral Methods,” NSF-CBMS Monograph No. 26 ( SIAM, Philadelphia, 1977 )Google Scholar
  26. [26]
    D. Montgomery, W.H. Matthaeus, W.T. Stribling, D. Martinez, and S. Oughton, Phys. Fluids A4, 3 (1992).zbMATHCrossRefGoogle Scholar
  27. [27]
    D. Montgomery, X. Shan, and W.H. Matthaeus, Phys. Fluids A5, 2207 (1993).MathSciNetzbMATHCrossRefGoogle Scholar
  28. [28]
    W.B. Jones and D. Montgomery, Physica D73, 227 (1994).zbMATHCrossRefGoogle Scholar
  29. [29]
    T. Herbert, Fluid Dyn. Trans11, 77 (1983).Google Scholar
  30. [30]
    S.A. Orszag and L.C. Kells, J. Fluid Mech96, 159 (1980).CrossRefGoogle Scholar
  31. [31]
    S.A. Orszag and A.T. Patera, J. Fluid Mech128, 347 (1983).zbMATHCrossRefGoogle Scholar
  32. [32]
    D. Lynden-Bell, Mon. Not. R. Astr. Soc136, 101 (1967).Google Scholar
  33. [33]
    R. Robert and J. Sommeria, J. Fluid Mech229, 291 (1991).MathSciNetzbMATHCrossRefGoogle Scholar
  34. [34]
    R. Robert and J. Sommeria, Phys. Rev. Lett69, 2776 (1992).MathSciNetzbMATHCrossRefGoogle Scholar
  35. [35]
    J. Miller, P. Weichmann, and M. Cross, Phys. Rev. A 45, 2328 (1992).Google Scholar
  36. [36]
    D. Montgomery, L. Turner, and G. Vahala, J. Plasma Phys.21, 239 (1979).CrossRefGoogle Scholar
  37. [37]
    G. Vahala and J. Ambrosiano, Phys. Fluids24, 2253 (1981).zbMATHCrossRefGoogle Scholar
  38. [38]
    D. Biskamp, Phys. Fluids B5, 3893 (1993).CrossRefGoogle Scholar
  39. [39]
    D. Montgomery and Y.C. Lee, Ap J. 368, 380 (1990).MathSciNetCrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • D. Montgomery
    • 1
  • X. Shan
    • 1
  • W. H. Matthaeus
    • 2
  1. 1.Dept. of Physics & AstronomyDartmouth CollegeHanoverUSA
  2. 2.Bartol Research InstituteUniversity of DelawareNewarkUSA

Personalised recommendations