Bayesian Estimation of MR Images from Incomplete Raw Data

  • G. J. Marseille
  • R. de Beer
  • M. Fuderer
  • A. F. Mehlkopf
  • D. van Ormondt
Conference paper
Part of the Fundamental Theories of Physics book series (FTPH, volume 70)


This work concerns reduction of the MRI scan time through optimal sampling. We derive optimal sample positions from Cramér-Rao theory. These positions are nonuniformly distributed, which hampers Fourier transformation to the image domain. With the aid of Bayesian formalism we estimate an image that satisfies prior knowledge while its inverse Fourier transform is compatible with the acquired samples. The new technique is applied successfully to a real-world MRI scan of a human brain.


Magnetic Resonance Scan Time Reduction Optimal Non-Uniform Sampling Bayesian Estimation Image Reconstruction 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    F. Wehrli, The Origins and Future of Nuclear Magnetic Resonance Imaging, Physics Today, 34–42 (1992).Google Scholar
  2. [2]
    P. Barone and G. Sebastiani, A New Method of Magnetic Resonance Image Reconstruction with Short Aquisition Time and Truncation Artifact Reduction, IEEE Trans. Med. Imag., 11, 250–259 (1992).CrossRefGoogle Scholar
  3. [3]
    G.J. Marseille, M. Fuderer, R. de Beer, A.F. Mehlkopf, D. van Ormondt, Reduction of MRI Scan Time through Non-Uniform Sampling and Edge Distribution Modelling, J. Magn. Reson., B103, 192–196 (1994).Google Scholar
  4. [4]
    M. Fuderer, Ringing Artefact Reduction by an Efficient Likelihood Improvement Method, Proc. SPIE, 1137, 84–90 (1989).Google Scholar
  5. [5]
    A. van den Bos, Parameter Estimation, Chapter 8 in: Handbook of Measurement Science, Vol. 1, P.H. Sydenham Ed., Wiley, London (1982).Google Scholar
  6. [6]
    G.J. Marseille, R. de Beer, A.F. Mehlkopf, D. van Ormondt, Optimization of Sample Positions in Magnetic Resonance Spectroscopy, Proc. ProRISC/IEEE Workshop on Circuits, Systems, and Signal Processing, pp. 233–238, J.P. Veen and M.J. de Ket, Eds., Utrecht, STW (1993).Google Scholar
  7. [7]
    R.T. Constable and R. Henkelman, Why MEM Does Not Work in MR Image Reconstruction, Magn. Reson. Med., 14, 12–25 (1990).CrossRefGoogle Scholar
  8. [8]
    Moran, Observations on Maximum Entropy Processing of MR Images, Magn. Reson. Imag., 9,213–221 (1991).CrossRefGoogle Scholar
  9. [9]
    Y. Cao and D.N. Levin, Feature-Guided Acquisition and Reconstruction of MR Images, In: IPMI 93, Lecture Notes in Computer Science 687, 278–292(1993).CrossRefGoogle Scholar
  10. [10]
    Y. Cao and D.N. Levin, In: SPIE, Vol. 2167, 258–270(1994).CrossRefGoogle Scholar
  11. [11]
    Y. Cao and D.N. Levin, Feat ure-Recognizing MRI, Magn. Reson. Med., 30, 305–317 (1993).CrossRefGoogle Scholar
  12. [12]
    J.P. Norton, An Introduction to Identification, Academic Press, London (1986).zbMATHGoogle Scholar
  13. [13]
    G. McGibney, M.R. Smith, S.T. Nichols, A. Crawley, Quantitative Evaluation of Several Partial Fourier Reconstruction Algorithms Used in MRI, Magn. Reson. Med., 30, 51 –59 (1993).CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 1996

Authors and Affiliations

  • G. J. Marseille
    • 1
  • R. de Beer
    • 1
  • M. Fuderer
    • 2
  • A. F. Mehlkopf
    • 1
  • D. van Ormondt
    • 1
  1. 1.Applied Physics LaboratoryDelft University of technologyDelftThe Netherlands
  2. 2.Philips Medical SystemsBestThe Netherlands

Personalised recommendations