Skip to main content

Abstract

Tube or pusher furnaces, hereafter called pusher furnaces, and moving bed furnaces have been used for the continuous production of ceramic powders. The present work will focus on the use of these furnaces as reactors for non-oxide ceramic powder synthesis at high temperatures (i.e. above 1773 K (1500°C)).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Biernacki, J. (1987) Formation of silicon monoxide and application to the growth of vapor-liquid-solid silicon carbide whiskers, PhD Dissertation, Cleveland State University, Cleveland, OH.

    Google Scholar 

  • Bird, R.B., Stewart, W.E. and Lightfoot, E.N. (1960) Transport Phenomena, John Wiley, New York.

    Google Scholar 

  • Bisio, A. and Kabel, R.L. (1985) Scaleup of Chemical Processes, John Wiley, New York.

    Google Scholar 

  • Chase, M.W., Davies, C.A., Downey, Jr, J.R., Frurip, D.J., McDonald, R.A. and Syverud, A.N. (1985) JANAF Thermochemical Tables, American Chemical Society, New York.

    Google Scholar 

  • Danninger, H., Janng, G., Tarani, E. and Schrey, G. (1985) Particle coalescence during hydrogen reduction of fine Fe2O3 powders, in 1985 Powder Metallurgy Group Meeting: The Production, Characterization and Handling of Metal Powders - Preprint, Institute of Metals, London, pp. 1–13.

    Google Scholar 

  • Dunn, D.A., Paquette, M.S., Easter, H. and Pihlaja, R.K. (1991) Continuous carbothermal reactor. US Patent 4,983,553.

    Google Scholar 

  • Enomoto, R., Yoshioka, M. and Yokoyama, T. (1981) Apparatus for producing silicon carbide. US Patent 4,292,276.

    Google Scholar 

  • Harper (1988) Graphite Element Furnaces. Sales Bulletin #GEF-688, Harper International Corp.

    Google Scholar 

  • Hayashi, T., Mochizuki, F. and Ozawa, M. (1986) Process and continuous reaction furnace for production of beta-type silicon carbide whiskers. UK Patent Application 8517671.

    Google Scholar 

  • Henley, J.P., Cochran, G.A., Dunn, D.A., Eisman, G.A. and Weimer, A.W. (1994) Moving bed process for carbothermally synthesizing nonoxide ceramic powders. US Patent 5,370,854.

    Google Scholar 

  • Hollar, W.E. and Kim, J.J. (1991) Review of VLS SiC whisker growth technology. Ceram. Eng. Sci. Proc., 12, 979–91.

    Article  CAS  Google Scholar 

  • Kieffer, R. and Benevosky, F. (1978) Carbides (industrial heavy metal), in The Encyclopedia of Chemical Technology (eds M. Grayson and D. Eckroth), John Wiley, New York, pp. 490–505.

    Google Scholar 

  • Kim, J.J. and McMurtry, C.H. (1985) TiB2 powder production for engineered ceramics. Ceram. Eng. Sci. Proc., 6, 1313–20.

    Article  CAS  Google Scholar 

  • Kim, J.J., Dover, B.J. and Venkateswaran, V. (1986) Role of heat transfer in advanced ceramic manufacture, in Heat Transfer: Korea-US Seminar on Thermal Engineering and High Technology (eds J.H. Kim, S.T. Ro and T.S. Lee), Hemisphere Publishing Corporation, Washington, pp. 251–69.

    Google Scholar 

  • Kimmel, E.R., Shaffer, M.E., Pinkowski, T.R. and Harris, G.L. (1987) Method of producing monotungsten carbide powder. US Patent 4,664,899.

    Google Scholar 

  • Kurachi, Y., Arai, K., Wada, H., Watabe, Y. and Irako, S. (1987) Method of producing silicon carbide. US Patent 4,702,900.

    Google Scholar 

  • Kuramoto, N. and Taniguchi, H. (1986) Fine powder of aluminum nitride, composition and sintered body thereof and processes for their production. US Patent 4,618,592.

    Google Scholar 

  • Laubitz, M.J. (1959) Thermal conductivity of powders. Can. J. Phys., 37, 798–808.

    Article  CAS  Google Scholar 

  • Lefort, P. and Billy, M. (1993) Mechanism of AlN formation through the carbothermal reduction of Al2O3 in a flowing N2 atmosphere. J. Am. Ceram. Soc., 76, 2295–99.

    Article  CAS  Google Scholar 

  • Levenspiel, O. (1972) Chemical Reaction Engineering, John Wiley, New York.

    Google Scholar 

  • Moore, W.G. (1990) Method and apparatus for producing boron carbide crystals. World Patent WO 90/08102.

    Google Scholar 

  • Nakano, K., Matsuda, N., Murase, M. and Murakami, H. (1991) Furnace structure for ceramic powder production. US Patent 4,986,967.

    Google Scholar 

  • Orfeuil, M. (1987) Electric Process Heating: Technologies/ Equipment/Applications, Battelle Press, Columbus, OH.

    Google Scholar 

  • Perry, R.H. and Green, D. (1984) Perry’s Chemical Engineers’ Handbook, McGraw-Hill Book Company, New York.

    Google Scholar 

  • Rafaniello, W. and Moore, W.G. (1989) Producing boron carbide. US Patent 4,804,525.

    Google Scholar 

  • Ravenel, P. and Bachelard, R. (1994) Continuous process for manufacturing aluminum nitride by the carbonitridation of alumina. Continuous process for manufacturing aluminum nitride by the carbonitridation of alumina in a moving bed reactor. EP 94-401,943.

    Google Scholar 

  • Ravenel, P., Bachelard, R., Disson, J.-P. and joubert, P. (1994) Continuous process for manufacturing aluminum nitride by the carbonitridation of alumina. EP 94-401943.

    Google Scholar 

  • Reh, L. (1978) Selection criteria for noncatalytic gas/solid high-temperature reactors. Ger. Chem. Eng., 1, 319–29.

    Google Scholar 

  • Smudski, P.A. (1968) Metal carbide and boride production. US Patent 3,379,647.

    Google Scholar 

  • Szekely, J. and Themelis, N.J. (1971) Rate Phenomena in Process Metallurgy, Wiley Interscience, New York.

    Google Scholar 

  • Taylor, R.F. (1971) Heat and mass transfer in gas/solid reaction systems, in High Temperature Chemical Reaction Engineering (eds F. Roberts, R.F. Taylor and T.R. Jenkins), The Institution of Chemical Engineers, London, pp. 1–38.

    Google Scholar 

  • Taylor, R.F., Bentley, J., Barker, J.E., Beveridge, G.S.G., Geldart, D., Jepson, G., Marshall, G., Woods, C.W. and Younger, R.N. (1971) Heat and mass transfer in gas/solid reaction systems, in High Temperature Chemical Reaction Engineering (eds F. Roberts, R.F. Taylor and T.R. Jenkins), The Institution of Chemical Engineers, London, pp. 39–85.

    Google Scholar 

  • Touloukian, Y.S. and DeWitt, D.P. (1972) Thermal Radiative Properties-Nonmetallic Solids. IFI/Plenum, New York-Washington.

    Google Scholar 

  • Van der Pyl, E. (1970) Apparatus and method for the continuous furnacing of borides, carbides and silicides. US Patent 3,535,080.

    Google Scholar 

  • van Dijen, F.K. and Metselaar, R. (1991) The chemistry of the carbothermal synthesis of β-SiC: Reaction mechanism, reaction rate and grain growth. J. Eur. Ceram. Soc., 7, 177–84.

    Article  Google Scholar 

  • van Dijen, F.K., Metselaar, R. and Siskens, C.A.M. (1985) Large scale production of fine non-oxide ceramic powders. Wld Ceram., 2, 15–17.

    Google Scholar 

  • Venkateswaran, V., Sane, A., Katz, J., Kim, J. and McMurtry, C. (1992) Process for the continuous production of high purity, ultra-fine, aluminum nitride powder by the carbo-nitridization of alumina. US Patent 5,108,713.

    Google Scholar 

  • Weimer, A.W., Nilsen, K.J., Cochran, G.A. and Roach, R.P. (1993) Kinetics of carbothermal reduction synthesis of beta silicon carbide. AIChE J., 39, 493–503.

    Article  CAS  Google Scholar 

  • Welty, J.R., Wicks, C.E. and Wilson, R.E. (1976) Fundamentals of Momentum, Heat, and Mass Transfer, John Wiley, New York.

    Google Scholar 

  • Wilkening, S. (1988) Process and device for the thermal and/or reducing treatment of solid, granular and/or agglomerated feed materials. German Patent 36446057.

    Google Scholar 

  • Zhangyuan, Y., Daixuan, S., Hezhen, Z. and Wanwu, Z. (1990) Reduction process of blue tungsten oxide and its microcomputer process control. Rare Met., 9, 105–09.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Chapman & Hall

About this chapter

Cite this chapter

Hollar, W.E., Kim, J.J. (1997). Tube/Pusher/Moving Bed Furnace Processes. In: Weimer, A.W. (eds) Carbide, Nitride and Boride Materials Synthesis and Processing. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0071-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0071-4_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6521-4

  • Online ISBN: 978-94-009-0071-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics