Skip to main content

Abstract

Silicon carbide (SiC) is not uncommonly referred to as ‘carborundum’. This vernacular term commemorates a word coined by Edward G. Acheson in 1892 to describe crystals that he made in an experiment which had the real goal of making a diamond-like crystal from carbon and alundum (Acheson, 1893). Using a primitive electric furnace of his own design, he in fact made Sic. Acheson immediately designed a more efficient electric furnace and soon a profitable business with the jewelry trade was established. A century later, the furnaces used to make almost all Sic world-wide follow his original design concept.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acheson, E.G. (1893) Carborundum: its history, manufacture and uses. J. Franklin Inst., 136, 194–214.

    Article  Google Scholar 

  • Acheson, E.G. (1895) Production of artificial crystalline carbonaceous materials. US Patent Reissue No. 11,473.

    Google Scholar 

  • Austin, G.T. (1989) Abrasive materials, in Minerals Yearbook, US Bureau of Mines, pp. 77–96.

    Google Scholar 

  • Baumann, H.N. (1952) The relationship of alpha and beta silicon carbide. J. Electrochem. Soc., 99, 109–14.

    Article  CAS  Google Scholar 

  • Butler, G.M. (1952) Electric furnace silicon carbide production. J. Electrochem. Soc., 99, 51C–54C.

    Article  CAS  Google Scholar 

  • Cheape, C.W. (1985) Family Firm to Modern Multinational, Norton Company, a New England Enterprise, Harvard University Press, Cambridge, MA.

    Google Scholar 

  • Colson, A. (1882) Some new carbosilicic compounds. C.R. Acad. Sci, 94, 1316–18.

    Google Scholar 

  • Cowles, E.H. and Cowles, A.H. (1885) Electric smelting furnace. US Patent 319,945.

    Google Scholar 

  • Despretz, C.M. (1849) Fourth note on the fusion and volatilization of bodies. C.R. Acad. Sci., 29, 709–24.

    Google Scholar 

  • Drowart, J. and De Maria, G. (1960) Thermodynamic study of the binary system carbon-silicon using a mass spectrometer, in Silicon Carbide, A High Temperature Semiconductor (eds J.R. O’Connor and J. Smiltens), Pergamon, New York, pp. 16–23.

    Google Scholar 

  • Eardley-Wilmot, V.L. (1929) Artificial Abrasives and Manufactured Abrasive Products and their Uses, F.A. Acland, Ottawa, pp. 6–14.

    Google Scholar 

  • Exolon-ESK (1990) Carbolon, July, 1–2, Exolon-ESK Company, Hennepin, IL.

    Google Scholar 

  • Exolon-ESK (1991) Carbolon, March, 1–2, Exolon-ESK Company, Hennepin, IL.

    Google Scholar 

  • Finlay, G.R. (1952) Calculated energy requirements of electric furnace products. Chem. Canada, 14(2), 25–28.

    Google Scholar 

  • Friesen, L. (1994) A century of SiC. Ceram. Indust., Feb., 41–44.

    Google Scholar 

  • Hamilton, D.R. (1960) Preparation and properties of pure silicon carbide, in Silicon Carbide, A High Temperature Semiconductor (eds J.R. O’Connor and J. Smiltens), Pergamon, New York, pp. 43–52.

    Google Scholar 

  • Jepps, N.W. and Page, T.F. (1983) Polytypic transformations in silicon carbide. J. Cryst. Growth Character., 7, 259–307.

    Article  CAS  Google Scholar 

  • Kistler-De Coppi, P. A. and Richarz, W. (1986) Phase transformations and grain growth in silicon carbide powders. Int. J. High Technol. Ceram., 2, 99–113.

    Article  CAS  Google Scholar 

  • Koehler, W.A. (1943) Principles and Applications of Electrochemistry, Vol. 2, Applications, Wiley, New York, pp. 443–47.

    Google Scholar 

  • Lee, J.G. and Cutler, I.B. (1975) Formation of silicon carbide from rice hulls. Ceram. Bull., 54(2), 195–98.

    CAS  Google Scholar 

  • Margrave, J.L. and Mamantov, G. (1967) High-temperature reactions, in High Temperature Materials and Technology (eds I.E. Campbell and E.M. Sherwood), Wiley, New York, p. 88.

    Google Scholar 

  • Marsden, R.S. (1880) Crystallization of silica from fused metals. Proc. R. Soc. Edinb., 11, 37–41.

    Google Scholar 

  • McMullen, J.C. (1957) A review of patents on silicon carbide furnacing. J. Electrochem. Soc., 104, 462–65.

    Article  CAS  Google Scholar 

  • Mehrwald, K.H. (1967) Die Rolle von NaCl bei der Technischen SiC-Herstellung. Ber. Dtsch. Keram. Ges., 44, 148–55.

    CAS  Google Scholar 

  • Moser, M. (1980) Microstructures of Ceramics, Structure and Properties of Grinding Tools, Akademiai Kiado, Budapest, pp. 119–39.

    Google Scholar 

  • Nagamori, M., Malinsky, I. and Claveau, A. (1986) Thermodynamics of the Si-C-O system for the production of silicon carbide and metallic silicon. Met. Trans. B, 17, 503–14.

    Article  CAS  Google Scholar 

  • Parche, C. (1964) Silicon carbide, in Encyclopedia of Chemical Technology, 2nd edn, Wiley, New York, pp. 114–32.

    Google Scholar 

  • Poch, W. and Dietzel, A. (1962) The formation of silicon carbide from silicon dioxide and carbon. Ber. Deut. Keram. Ges., 39, 413–26.

    CAS  Google Scholar 

  • Porter, R.F. (1967) High-temperature vapor species, in High Temperature Materials and Technology (eds I.E. Campbell and E.M. Sherwood), Wiley, New York, p. 74.

    Google Scholar 

  • Rahaman, M.N., Boiteux, Y. and De Jonghe, L.C. (1986) Surface characterization of silicon nitride and silicon carbide powders. Ceram. Bull., 65(8), 1171–76.

    CAS  Google Scholar 

  • Scace, R.I. and Slack, G.A. (1960) The Si-C and Ge-C phase diagrams, in Silicon Carbide, A High Temperature Semiconductor (eds J.R. O’Connor and J. Smiltens), Pergamon, New York, pp. 24–30.

    Google Scholar 

  • Seider, R.J., Guichelaar, P.J. and Anderson, R.O. (1987a) Production of silicon carbide with automatic separation of a high grade fraction. US Patent 4,659,022.

    Google Scholar 

  • Seider, R.J., Guichelaar, P.J. and Anderson, R.O. (1987b) Automatic method for separating and cleaning silicon carbide furnace materials. US Patent 4,686,032.

    Google Scholar 

  • Smith, C.W., Llewellyn, T.O. and Sullivan, G.V. (1995) Silicon carbide, flotation recovery, in Encyclopedia of Chemical Processing and Design (ed. J.J. McKetta), Vol. 50, Wiley, New York, pp. 172–78.

    Google Scholar 

  • Smoak, R.H., Korzekwa, T.M., Kunz, S.M. and Howell, E.D. (1978) Silicon carbide, in Kirk-Othmer: Encyclopedia of Chemical Technology, Vol. 4, The Minerals, Metals and Materials Society, Warrendale, PA, pp. 520–35.

    Google Scholar 

  • Tone, F.J. (1908) Use of waste gases. US Patent 908,357.

    Google Scholar 

  • Tuset, J. Kr. and Raaness, O. (1976) Reactivity of reduction materials for the production of silicon, silicon-rich ferroalloys and silicon carbide, in 34th Electric Furnace Conference Proceedings, ISS-AIME, Warrendale, PA, pp. 101–07.

    Google Scholar 

  • Vanderbilt, B.M. (1974) Inventing: How the Masters Did It, Moore Publishing, Durham, NC, p. 187.

    Google Scholar 

  • Versteegen, J.M. and Dalmijn, W.L. (1990) Concentration of silicon carbide with a density process. Min. Metall. Process., 8, 136–40.

    Google Scholar 

  • Wei, G.C. (1983) Beta SiC powders produced by carbothermic reduction of silica in a high-temperature rotary furnace. Comm. Am. Ceram. Soc., C-111–13.

    Google Scholar 

  • Weimer, A.W., Nilsen, K.J., Cochran, G.A. and Roach, R.P. (1993) Kinetics of carbothermal reduction synthesis of beta-silicon carbide. AIChE J., 39(3), 493–503.

    Article  CAS  Google Scholar 

  • Wiebke, G., Korsten, A., Benecke, T. and Petersen, F. (1979) Collector apparatus for gaseous reaction products. Canadian Patent 1,066,019.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Chapman & Hall

About this chapter

Cite this chapter

Guichelaar, P.J. (1997). Acheson Process. In: Weimer, A.W. (eds) Carbide, Nitride and Boride Materials Synthesis and Processing. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0071-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0071-4_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6521-4

  • Online ISBN: 978-94-009-0071-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics