Skip to main content

Abstract

The manufacture of non-oxides by carbothermal reduction can be carried out in a variety of ways to synthesize carbides, borides and nitrides. Carbides are manufactured by the high temperature reaction between carbon and metal oxides alone. The synthesis of borides requires either that elemental boron is present or that the metal oxide or carbon source contains boron, while reaction including nitrogen or a nitrogen containing species is necessary to produce the nitride materials. In all cases, the reactions are highly endothermic, have carbon monoxide (CO) as a reaction by-product and are thermodynamically favorable at only very high temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, R.D. (1953) The solid solution series, boron-boron carbide. J. Am. Chem. Soc., 75(14), 3582.

    Article  CAS  Google Scholar 

  • Alonso, F.C.N., Morales, M.L.Z., Salas, A.U. and Bedolla, J.E. (1987) Tungsten trioxide reduction-carburization with carbon monoxide-carbon dioxide mixtures: kinetics and thermodynamics. Int. J. Mineral Proc., 20, 137–51.

    Article  Google Scholar 

  • Amberger, E., Druminski, M. and Ploog, K. (1971) Kinetic formation characteristics in the boron-carbon system-pyrolitic formation of carbon-rich boron-carbon phases. J. Less-Common Met., 23, 43.

    Article  CAS  Google Scholar 

  • Austin, J.B. and Rickett, R.L. (1939) Kinetics of decomposition of austenite at constant temperature. Trans. AIME, 135(8), 396–415.

    Google Scholar 

  • Avrami, M. (1939) Kinetics of phase change. I. General theory. J. Chem. Phys., 7, 1103.

    Article  CAS  Google Scholar 

  • Avrami, M. (1940) Kinetics of phase change. II. Transformation-time relations for random distribution of nuclei. Chem. Phys., 8, 212.

    CAS  Google Scholar 

  • Avrami, M. (1941) Kinetics of phase change. III. Granulation, phase change, and microstructure. Chem. Phys., 9, 177.

    CAS  Google Scholar 

  • Baik, Y., Shanker, K., McDermid, J.R. and Drew, R.A.L. (1994) Carbothermal synthesis of aluminum nitride using sucrose. J. Am. Ceram. Soc., 77(8), 2165–72.

    Article  CAS  Google Scholar 

  • Bandyopadhyay, S. and Mukerji, J. (1991) Reaction sequences in the synthesis of silicon nitride from quartz, in Ceramics International, 17 (ed. P. Vincenzini), Elsevier, Amsterdam, pp. 171–79.

    Google Scholar 

  • Bandyopadhyay, S., Sanyal, A.S. and Mukerji, J. (1994) Parameters controlling the synthesis of beta-silicon nitride from silica, in Key Engineering Materials, 89–91 (eds M.J. Hoffmann, P.F. Becher and G. Petzow), Trans Tech Publications, Switzerland, pp. 55–62.

    Google Scholar 

  • Blumenthal, J.L., Santy, M.J. and Burns, E.A. (1966) Kinetic studies of high-temperature carbon-silica reactions in charred silica-reinforced phenolic resins. AIAA J., 4(6), 1053.

    Article  Google Scholar 

  • Carter, R.E. (1961) Kinetic model for solid state reactions. J. Chem. Phys., 34, 2010.

    Article  CAS  Google Scholar 

  • Chen, H.-K., Lin, C.-I. and Lee, C. (1994) Kinetics of the reduction of carbon/alumina powder mixture in a flowing nitrogen stream. J. Am. Ceram. Soc., 77(7), 1753–56.

    Article  CAS  Google Scholar 

  • Cho, Y.W. and Charles, J.A. (1991a) Synthesis of nitrogen ceramic powders by carbothermal reduction and nitridation. Part 1. Silicon nitride. Mat. Sci. Technol, 7, 289–98.

    CAS  Google Scholar 

  • Cho, Y.W. and Charles, J.A. (1991b) Synthesis of nitrogen ceramic powders by carbothermal reduction and nitridation. Part 3. Aluminum nitride. Mat. Sci. Technol.7, 495–504.

    CAS  Google Scholar 

  • Clark, H.K. and Hoard, J.L. (1943) The crystal structure of boron carbide. J. ACS, 65(11), 2115.

    CAS  Google Scholar 

  • Colque, S. and Grange, P. (1994) Proposal for a new mechanism for the transformation of alumina into aluminum nitride. J. Mat. Sci. Lett., 13, 621–22.

    Article  CAS  Google Scholar 

  • Doraiswamy, L.K. and Sharma, M.M. (1984) Heterogeneous Reactions: Analysis, Examples, and Reactor Design, Vol. 1: Gas-Solid and Solid-Solid Reactions, John Wiley & Sons, New York.

    Google Scholar 

  • Durham, B.G., Murtha, M.J. and Burnet, G. (1988) SÄ°3N4 by the carbothermal ammonolysis of silica. Adv. Ceram. Mat., 3(1), 45–48.

    CAS  Google Scholar 

  • Durham, S.J.P., Shanker, K. and Drew, R.A.L. (1989) Silicon nitride particle formation during carbothermal reduction, in Ceramic Powder Processing Science II (eds H. Hausner, G.L. Messing and S. Hirano), Deutsche Keramische Gesellschaft, Koln, p. 313.

    Google Scholar 

  • Durham, S.J.P., Shanker, K. and Drew, R.A.L. (1991) Carbothermal synthesis of silicon nitride: effect of reaction conditions. J. Am. Ceram. Soc., 74(1), 31–37.

    Article  CAS  Google Scholar 

  • Ekelund, M. and Forslund, B. (1990) Si3N4 powder synthesis by high-pressure carbothermic nitridation of SiO2: conversion as a function of gas flow rate and pressure, in Ceramic Powder Science III — Ceramic Transactions, 12 (eds G.L. Messing, S.-I. Hirano and H. Hausner), American Ceramic Society, Westerville, OH, pp. 337–45.

    Google Scholar 

  • Ekelund, M. and Forslund, B. (1992a) Reactions within quartz-carbon mixtures in a nitrogen atmosphere. J. Eur. Ceram. Soc., 9, 107–19.

    Article  CAS  Google Scholar 

  • Ekelund, M. and Forslund, B. (1992b) Carbothermal preparation of silicon nitride: influence of starting material and synthesis parameters. J. Am. Ceram. Soc., 75, 532–39.

    Article  CAS  Google Scholar 

  • Ekelund, M., Forslund, B. and Johansson, T. (1989) Study of the conversion of C + SiO2 mixtures to Si3N4 in pressurized nitrogen, in Ceramic Materials and Components for Engines (ed. V.J. Tennery), American Ceramic Society, Westerville, OH, pp. 101–14.

    Google Scholar 

  • Erofeyev, B.V. (1946) A generalized equation of chemical kinetics and its application in reactions involving solids. C.R. (Dokl.) Acad. Sci. URSS, 52(6), 511–14.

    Google Scholar 

  • Figusch, V. and Licko, T. (1987) Synthesis of silicon nitride powder by carbothermal nitriding of silica, in High Tech Ceramics (ed. P. Vincenzini), Elsevier, Amsterdam, pp. 517–26.

    Google Scholar 

  • Ginstling, A.M. and Brounshtein, B.I. (1950) Diffusion kinetics of reactions in spherical particles. J. Appl. Chem. USSR, 23, 1327 (English translation).

    CAS  Google Scholar 

  • Harrison, L.G. (1969) The theory of solid phase kinetics, in Chemical Kinetics (eds C.H. Bamford and C.F.H. Tipper), Elsevier, Amsterdam, pp. 377–462.

    Google Scholar 

  • Henderson, J.B. and Tant, M.R. (1983) A study of the kinetics of high temperature carbon-silica reactions in an ablative polymer composite. Poly. Compos.4(4), 233.

    Article  CAS  Google Scholar 

  • Hendry, A. and Jack, K.H. (1975) The preparation of silicon nitride from silica, in Special Ceramics, 6 (ed. P. Popper), British Ceramic Research Association, Stoke-on-Trent, pp. 199–209.

    Google Scholar 

  • Hirai, S. and Katayama, H.G. (1991) Mechanism of AlN synthesis by carbothermic reduction of Al2O3 in a flowing N2 atmosphere, in Ceramics Today - Tomorrow’s Ceramics (ed. P. Vincenzini), Elsevier, Amsterdam, pp. 615–22. (Mater. Sci. Monograph 66B.)

    Google Scholar 

  • Hirai, S., Miwa, T., Iwata, T., Ozawa, M. and Katayama, H.G. (1989) Formation of aluminum nitride by carbothermic reduction of alumina in a flowing nitrogen atmosphere. J. Jap. Inst. Met., 53(10), 1035–40.

    CAS  Google Scholar 

  • Hirai, S., Ozawa, M., Katayama, H.G. and Uemura, Y. (1992) Structural examination of simultaneous reduction and nitridation of sapphire. J. Jap. Metall. Soc., 56(5), 541–47.

    CAS  Google Scholar 

  • Hofman, H., Vogt, U., Kerber, A. and van Dijen, F. (1993) Silicon nitride powder from carbothermal reaction, in Silicon Nitride Ceramics - Scientific and Technological Advances (eds I.-W. Chen, P.F. Becher, M. Mitomo, G. Petzow and T.-S. Yen), Materials Research Society, Pittsburgh, PA, pp. 105–20.

    Google Scholar 

  • Horio, M., Tsukada, M. and Naito, J. (1989) The concept of a fluidized bed of microcontainer particles and its application to the synthesis of fine ceramic powders, in Fluidization VI (eds J.R. Grace, L.W. Shemilt and M.A. Bergougnou), Engineering Foundation, New York, pp. 335–42.

    Google Scholar 

  • Inoue, H., Komeya, K. and Tsuge, A. (1982) Synthesis of silicon nitride powder from silica reduction. J. Am. Ceram. Soc., 65, C-205.

    Article  CAS  Google Scholar 

  • Ish-Shalom, M. (1982) Formation of aluminum oxynitride by carbothermal reduction of aluminum oxide in nitrogen. J. Mat. Sci. Lett., 1, 147–49.

    Article  CAS  Google Scholar 

  • Jach, J. (1963) The thermal decomposition of NaBrO3. Part I. Unirradiated material. J. Phys. Chem. Solids, 24, 63.

    Article  CAS  Google Scholar 

  • Jander, W. (1927) Reactions in solid state at high temperatures: I. Z. Anorg. Allgem. Chem., 163, 1.

    Article  CAS  Google Scholar 

  • Kennedy, P. and North, B. (1983) The production of fine silicon carbide powder, in Fabrication Science, 3 (ed. D. Taylor), 33(1). British Ceramic Society, Shelton.

    Google Scholar 

  • Kevorkijan, V., Komac, M. and Kolar, D. (1989) The influence of preparation conditions on the properties of beta SiC powders synthesized by carbothermic reduction. Ceram. Powd. Proc. Sci. Proc. Int. Conf. 327.

    Google Scholar 

  • Kevorkijan, V., Komac, M. and Kolar, D. (1992) Low temperature synthesis of sinterable SiC powders by carbothermal reduction of colloidal SiO2. J. Mat. Sci., 27(10), 2705.

    Article  CAS  Google Scholar 

  • Khalafalla, S.E. and Haas, L.A. (1972) Kinetics of carbothermal reduction of quartz under vacuum. J. Amer. Ceram. Soc.55(8), 414–17.

    Article  CAS  Google Scholar 

  • Kim, J.J. and McMurtry, C.H. (1985) TiB2 powder production for engineered ceramics. Ceram. Eng. Sci. Proc., 6(9, 10), 1313–20.

    Article  CAS  Google Scholar 

  • Klinger, N., Strauss, E.L. and Komarek, K.L. (1966) Reactions between silica and graphite. J. Amer. Ceram. Soc., 49(7), 369–75.

    Article  CAS  Google Scholar 

  • Komeya, K. and Inoue, H. (1975) Synthesis of the alpha form of silicon nitride from silica. J. Mat. Sci. Lett., 10, 1243–46.

    CAS  Google Scholar 

  • Komeya, K., Mitsuhashi, E. and Meguro, T. (1993) Synthesis of AlN powder by carbothermal reduction-nitridation method: effect of additives on rate. J. Ceram. Soc. Japan, 101(4), 377–82.

    Article  CAS  Google Scholar 

  • Kosolapova, T.Ya., Yakovleva, D.S., Olcinik, G.S., Bartnitskaya, T.S., Teľnikova, N.P. and Timofeeva, I.I. (1984) Some features of the formation of AlN during the reduction-nitriding of ultrafinely divided alumina. Soviet Powder Metall. Metal. Ceram. (Engl. transl.), 11, 14–19.

    Google Scholar 

  • Kuznetsova, V.L., Dmitrenko, V.A. and Kokurin, A.D. (1980) Kinetics of formation of silicon carbide. Zh. Vses. Khim. O-Va (Proc. Mendeleev Chem. Soc.), 25(1), 118–19.

    CAS  Google Scholar 

  • Lamoreaux, R.H., Hildenbrand, D.L. and Brewer, L. (1987) High-temperature behavior of oxides II. Oxides of Be, Mg, Ca, Sr, Ba, B, Al, Ga, In, Tl, 51, Ge, Sn, Pb, Zn, Cd, and Hg. J. Phys. Chem. Ref. Data, 16(3), 419–42.

    Article  CAS  Google Scholar 

  • Lee, J.-G. and Cutler, I.B. (1975) Formation of silicon carbide from rice hulls. Ceram. Bull., 54, 195.

    CAS  Google Scholar 

  • Lee, J.-G., Miller, P.D. and Cutler, I.B. (1976) Carbothermal reduction of silica, in Reactivity of Solids (eds J. Wood, O. Lindqvist, C. Helgesson and N.-G. Vannerberg), Plenum, New York, p. 707.

    Google Scholar 

  • Lefort, P. and Billy, M. (1993) Mechanism of AlN formation through the carbothermal reduction of Al2O3 in a flowing N2 atmosphere. J. Am. Ceram. Soc., 76(9), 2295–99.

    Article  CAS  Google Scholar 

  • Lefort, P., Marty, F., Ado, G. and Billy, M. (1985) On the formation of aluminum nitride from alumina in the presence of carbon. Rev. Chim. minerale, 22, 534–45.

    CAS  Google Scholar 

  • Levenspiel, O. (1972) Chemical Reaction Engineering, John Wiley & Sons, New York.

    Google Scholar 

  • Li, W.-L., Huang, L.P., Huang, X.Z., Kuang, G., Tan, S.H., Fwu, S.R. and Yen, T.S. (1983) Preparation of some high purity ultrafine non-oxide powders, in Ceramic Powders (ed. P. Vincenzini), Elsevier, Amsterdam, pp. 403–12.

    Google Scholar 

  • Li, W.-Y. and Riley, F.L. (1991) The production of titanium nitride by the carbothermal nitridation of titanium dioxide powder. J. Eur. Ceram. Soc., 8, 345–54.

    Article  CAS  Google Scholar 

  • Li, Y., Liu, L. and Dou, S. (1991) Kinetics of Si3N4 formation from rice hulls. J. Inorg. Mat. (Wuji Cailiao Xuebao), 6(1), 45–52.

    CAS  Google Scholar 

  • Licko, T., Figusch, V. and Puchyova, J. (1992) Synthesis of silicon nitride by carbothermal reduction and nitriding of silica: control of kinetics and morphology. J. Eur. Ceram. Soc., 9, 219–30.

    Article  CAS  Google Scholar 

  • Lindemer, T.B., Allen, M.D. and Leitnaker, J.M. (1969) Kinetics of the graphite-uranium dioxide reaction from 1400 to 1756 °C. J. Am. Ceram. Soc., 52, 233–37.

    Article  CAS  Google Scholar 

  • Liou, T.-H. and Chang, F.-W. (1995) Kinetics of carbothermal reduction and nitridation of silicon/ carbon mixture. Ind. Eng. Chem. Res., 34, 118–27.

    Article  CAS  Google Scholar 

  • Lipp, A. (1965) Boron carbide: production, properties, applications. Tech. Rundschau., 28(14), 33.

    Google Scholar 

  • Matkovich, V.I. (1976) Extension of the boron-carbon homogeneity range. J. Less-Common Met., 47, 37.

    Article  Google Scholar 

  • Metselaar, R., van Beek, J.A., Kodentsov, A. and van Loo, F.J.J. (1994) Carbothermal processing of silicon carbide ceramics. Trans. Mat. Res. Soc. Japan., 14A (Ceramics, Powders, Corrosion, and Advanced Processing), 809–14.

    CAS  Google Scholar 

  • Mori, M., Inoue, H. and Ochiai, T. (1983) Preparation of silicon nitride powder from silica, in Progress in Nitrogen Ceramics (ed. F.L. Riley), Martinus Nijhoff, The Hague, pp. 149–56.

    Google Scholar 

  • Motoi, S. and Sasaki, S. (1986) Effects of N2 and CO on the synthetic reaction of silicon nitride from silica. Denki Kagaku, 54, 170–72.

    CAS  Google Scholar 

  • Niihara, K., Nakahira, A. and Hirai, T. (1984) The effect of stoichiometry on mechanical properties of boron carbide. Comm. Am. Ceram. Soc., 1, C-13.

    Google Scholar 

  • O’Donnell, R.G. and Trigg, M.B. (1994) The mechanism of conversion of Al2O3 to AlN via carbothermal synthesis. Micron, 25(6), 575–79.

    Article  Google Scholar 

  • Ono, K. and Kurachi, Y. (1991) Kinetic studies on beta-SiC formation from homogeneous precursors. J. Mat. Sci., 26, 388–92.

    Article  CAS  Google Scholar 

  • Peck, D.-H., Kim, J.-Y. and Choi, S.-W. (1994) Effect of impurities on the formation of silicon nitride by carbothermal reduction-nitridation of fine hydrated silica powders, in Key Engineering Materials, 89–91 (eds M.J. Hoffman, P.F. Becher and G. Petzow), Trans Tech Publications, Switzerland, pp. 15–18.

    Google Scholar 

  • Pikalov, S.N. (1988) Mechanism of formation of graphitelike boron nitride in the carbothermal process. Poroshk. Metall, 5(305), 80–83.

    Google Scholar 

  • Ploog, K. (1972) Composition and structure of boron carbides prepared by CVD. J. Cryst. Growth, 24/25, 197.

    Article  Google Scholar 

  • Qian, D.F. and Xiong, Z.D. (1991) The study of preparation of AlN powder, in Proceedings 3rd International Conference on Properties and Applications of Dielectric Materials, Tokyo, July 8–12, pp. 669–71.

    Google Scholar 

  • Rahman, I.A. and Riley, F.L. (1989) The control of morphology in silicon nitride powder from rice husk. J. Eur. Ceram. Soc., 5, 11–22.

    Article  CAS  Google Scholar 

  • Rao, Y.K. (1971) The kinetics of reduction of hematite by carbon. Metallurg. Trans., 2, 1439–47.

    CAS  Google Scholar 

  • Rentzepis, P., White, D. and Walsh, P.N. (1960) Heat of formation of B2O2(g). J. Phys. Chem., 64, 1784.

    Article  CAS  Google Scholar 

  • Sepulveda, J.L., Folkerts, M.A. and Kelley, W. (1989) High purity fine grained aluminum nitride. Paper presented at 91st Annual American Ceramic Society Meeting, Indianapolis, IN, April 23–27.

    Google Scholar 

  • Sharp, J.H., Brindley, G.W. and Achar, B.N.N. (1966) Numerical data for some commonly used solid state reaction equations. J. Am. Ceram. Soc., 49, 379.

    Article  CAS  Google Scholar 

  • Shimoo, T., Sugimoto, M. and Okamura, K. (1990) Synthesis of silicon carbide powders from organosilicon polymers. Funtai Oyobi Funmatsu Yakin (Powders Powder Metall.), 37(11), 1132–37.

    CAS  Google Scholar 

  • Siddiqi, S.A. and Hendry, A. (1985) The influence of iron on the preparation of silicon nitride from silica. J. Mat. Sci., 20, 3230–38.

    Article  CAS  Google Scholar 

  • Strnad, Z. (1986) Glass-Ceramic Materials: Liquid Phase Separation, Nucleation and Crystallization in Glasses, Elsevier, New York, pp. 70–72.

    Google Scholar 

  • Szekely, J., Evans, J.W. and Sohn, H.Y. (1976) Gas-Solid Reactions, Academic Press, New York.

    Google Scholar 

  • Tagawa, H. and Sugawara, H. (1962) The kinetics of the formation of calcium carbide in a solid-solid reaction. Bull. Chem. Soc. Jpn, 35(8), 1276–79.

    Article  CAS  Google Scholar 

  • Tajika, M., Kohno, T., Yamaguchi, T. and Sako, K. (1991) A new carbothermal process for ultrafine AlN powder preparation, in Ceramic Transactions: Ceramic Powder Science IV (eds S.-I. Hirano, G.L. Messing and H. Hausner), American Ceramic Society, Westerville, OH, pp. 157–62.

    Google Scholar 

  • Tompkins, F.C. (1976) Decomposition reactions, in Treatise on Solid State Chemistry, Vol. 4, Reactivity of Solids (ed. N.B. Hannay), Plenum Press, New York, pp. 206–12.

    Google Scholar 

  • Tsuge, A., Inoue, H., Kasori, M. and Shinozaki, K. (1990) Raw material effect on AlN powder synthesis from Al2O3 carbothermal reduction. J. Mat. Sci., 25, 2359–61.

    Article  CAS  Google Scholar 

  • Tuohino, Y., Laitinen, R. and Torkkell, K. (1990) Synthesis of silicon nitride by the carbothermal route using high surface area starting materials, in Ceramic Transactions: Ceramic Powder Science III (eds G.L. Messing, S.-I. Hirano and H. Hausner), American Ceramic Society, Westerville, OH, pp. 329–36.

    Google Scholar 

  • van Dijen, F.K. and Metselaar, R. (1991) The chemistry of the carbothermal synthesis of beta-SiC: reaction mechanism, reaction rate and grain growth. J. Eur. Ceram. Soc., 7, 177–84.

    Article  Google Scholar 

  • Viscomi, F. and Himmel, L. (1978) Kinetic and mechanistic study on the formation of silicon carbide from silica flour and coke breeze. J. Met., June, 21–24.

    Google Scholar 

  • Vlasova, M.V., Bartnitskaya, T.S., Sukhikh, L.L., Krushinskaya, L.A., Tomila, T.V. and Artyuch, S. Yu (1995) Mechanism of Si3N4 nucleation during carbothermal reduction of silica. J. Mat. Sci., 30, 5263–71.

    Article  CAS  Google Scholar 

  • Wei, G.C., Kennedy, C.R. and Harris, L.A. (1984) Synthesis of sinterable SiC powders by carbothermic reduction of gel-derived precursors and pyrolysis of polycarbosilane. Ceram. Bull., 63, 1054.

    CAS  Google Scholar 

  • Weimer, A.W., Eisman, G.A., Susnitzky, D.W., Beaman, D.R. and McCoy, J.W. (1996) Mechanism and kinetics of the carbothermal nitridation synthesis of α-silicon nitride. J. Am. Ceram. Soc. (to be published).

    Google Scholar 

  • Weimer, A.W., Moore, W.G., Roach, R.P., Hitt, J.E., Dixit, R.S. and Pratsinis, S.E. (1992) Kinetics of carbothermal reduction synthesis of boron carbide. J. Am. Ceram. Soc., 75(9), 2509–14.

    Article  CAS  Google Scholar 

  • Weimer, A.W., Nilsen, K.J., Cochran, G.A. and Roach, R.P. (1993) Kinetics of carbothermal reduction synthesis of beta-silicon carbide. AIChE J., 39(3), 493–503.

    Article  CAS  Google Scholar 

  • Weimer, A.W., Roach, R.P., Haney, C.N., Moore, W.G. and Rafaniello, W. (1991) Rapid carbothermal reduction of boron oxide in a graphite transport reactor. AIChE J., 37(5), 759–68.

    Article  CAS  Google Scholar 

  • White, G.V., MacKenzie, K.J.D. and Johnston, J.H. (1992) Carbothermal synthesis of titanium nitride. Part III. Kinetics and mechanism. J. Mat. Sci., 27(16), 4300–04.

    Article  CAS  Google Scholar 

  • Willems, H.X., Hendrix, M.M.R.M., Metselaar, R. and de With, G. (1992a). Thermodynamics of AlON. I. Stability at lower temperatures. J. Eur. Ceram. Soc., 10(4), 327–37.

    Article  CAS  Google Scholar 

  • Willems, H.X., Hendrix, M.M.R.M., Metselaar, R. and de With, G. (1992b). Thermodynamics of AlON. II. Phase relations. J. Eur. Ceram. Soc., 10(4), 339–46.

    Article  CAS  Google Scholar 

  • Wood, C. (1984a) High temperature thermoelectric energy conversion I. Theory. Energy Corners. Mgmt., 24(4), 317.

    Article  CAS  Google Scholar 

  • Wood, C. (1984b) High temperature thermoelectric energy conversion II. Materials survey. Energy Corners. Mgmt., 24(4), 331.

    Article  CAS  Google Scholar 

  • Wood, C. and Emin, D. (1984) Refractory materials for high-temperature thermoelectric energy conversion. Mat. Res. Soc. Symp. Proc., 24, 199.

    Article  CAS  Google Scholar 

  • Yamaguchi, A. (1986) Effects of oxygen and nitrogen partial pressures on the stability of metals, carbides, nitrides, and oxides in refractories which contain carbon. Refractories, 38(4), 2–11.

    Google Scholar 

  • Yoon, S.J. and Jha, A. (1995) Vapor-phase reduction and the synthesis of boron-based ceramic phases. J. Mat. Sci., 30, 607–14.

    Article  CAS  Google Scholar 

  • Zhang, S.-C. and Cannon, W.R. (1984) Preparation of silicon nitride from silica. J. Am. Ceram. Soc., 67(10), 691–95.

    Article  CAS  Google Scholar 

  • Zhuang, Y., Wang, J. and Li, W. (1991) Synthesis mechanism of silicon nitride obtained from silica reduction. Rare Met., 10(2), 133–36.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Chapman & Hall

About this chapter

Cite this chapter

Weimer, A.W. (1997). Thermochemistry and Kinetics. In: Weimer, A.W. (eds) Carbide, Nitride and Boride Materials Synthesis and Processing. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0071-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0071-4_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6521-4

  • Online ISBN: 978-94-009-0071-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics