Skip to main content

Abstract

The growth of advanced non-oxide ceramics can be directly traced to the availability of high quality powders. Particle size reduction has been the primary powder feature that has allowed this technological development. Controlling phase and overall chemical purity have also been important.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alliegro, R.A., Coffin, L.B. and Tinklepaugh, J.R. (1956) Pressure-sintered silicon carbide. J. Am. Ceram. Soc., 39, 386–89.

    CAS  Google Scholar 

  • Almond, E.A. (1983) Deformation characteristics and mechanical properties of hard metals, in Science of Hard Materials (eds R.K. Viswanadham, D.J. Rowcliffe and J. Gurland), Plenum Press, New York and London, pp. 571–662.

    Google Scholar 

  • Anderson, C.A. and Bratton, R. (1977) Ceramic Materials for High Temperature Turbines, Final Report, US Energy Res. Dev. Adm. Contract No. EY-76-C-05-5210, Aug. 1977.

    Google Scholar 

  • Baranda, P.S., Knudsen, A.K. and Ruh, E. (1993) Effect of silica on the thermal conductivity of aluminum nitride. J. Am. Ceram. Soc., 76(7), 1761–71.

    Google Scholar 

  • Bartram, S.F. (1975) General Electric Report #75CRD022.

    Google Scholar 

  • Becher, P.F., Lin, H.T., Hwang, S.L., Hoffmann, M.J. and Chen, I.-W. (1993) The influence of micro-structure on the mechanical behavior of silicon nitride ceramics, in Silicon Nitride Ceramics — Scientific and Technological Advances, MRS Symposium Proceedings Vol. 287 (eds I.-W. Chen, P.F. Becher, M. Mitomo, G. Petzow and T.-S. Yen), Materials Research Society, Pittsburgh, pp. 147–58.

    Google Scholar 

  • Boecker, W., Landfermann, H. and Hausner, H. (1979) Sintering alpha silicon carbide with additions of aluminum. Powder Met. Int., 11(2), 83–85.

    CAS  Google Scholar 

  • Bolton, D. and Keeley, R.J. (1982) Effect of non-stoichiometric carbon contents on the fracture toughness of WC-Co hard metal alloys. Refract. Hard Met., 9, 103–11.

    Google Scholar 

  • Borom, M.P., Slack, G.A. and Szymaszek, J.W. (1972) Thermal conductivity of commercial aluminum nitride. Bull. Am. Ceram. Soc., 51(11), 852–56.

    CAS  Google Scholar 

  • Briegleb, F. and Geuther, A. (1862) About MgN and the affinity of nitrogen gas with metals. Ann. Chem., 123, 228.

    Google Scholar 

  • Brook, R.J. (1982) Fabrication principles for the production of ceramics with superior mechanical properties. Proc. Br. Ceram. Soc., 32, 7–24.

    CAS  Google Scholar 

  • Brookes, K.J.A. (1992) World Directory and Handbook of Hard Metals and Hard Materials, International Carbide Data, Hertfordshire.

    Google Scholar 

  • Carlstrom, E., Tjernlund, A.K., Olsson, B.M., Hermansson, L. and Carlsson, R. (1983) Particle size distribution of some sinterable silicon carbide powders, in Ceramic Powders (ed. P. Vincenzini), Elsevier, Amsterdam, pp. 671–78.

    Google Scholar 

  • Chermant, J.L. and Osterstock, F. (1976) Fracture toughness and fracture of tungsten carbide-cobalt composites. J. Mat. Sci, 11(10), 1939–51.

    CAS  Google Scholar 

  • Coble, R.L. (1958) Initial sintering of alumina and hematite. J. Am. Ceram. Soc., 41(1), 55–62.

    CAS  Google Scholar 

  • Coppola, J.A. and McMurty, C.H. (1976) Substitution of ceramics for ductile materials in design. Presented at National Symposium on Ceramics in the Service of Man, Carnegie Institution, Washington, DC.

    Google Scholar 

  • Cormack, A.N. (1989) Intrinsic disorder in aluminum nitride. J. Am. Ceram. Soc., 72(9), 1730–32.

    CAS  Google Scholar 

  • Culbertson, G.C. and Mathers, J.P. (1982) The effect of particle size and state of aggregation on the sintering of aluminum nitride, in Processing of Metal Ceramic Powders, Proceedings of a Symposium (eds R.M. German and K.W. Lay), Metallurgical Society AIME, Warrendale, PA, pp. 109–22.

    Google Scholar 

  • Cutler, R.A. (1984) Influence of microstructure on mechanical properties in cemented tungsten carbides. Dissertation, Univ. of Utah, Salt Lake City.

    Google Scholar 

  • Cutler, R.A. and Jackson, T.B. (1989) Liquid phase sintered silicon carbide, in Ceramic Materials and Components for Engines (ed. V.J. Tenner), The American Ceramic Society, Westerville, OH, pp. 309–18.

    Google Scholar 

  • Danes, F. Saint-Aman, E. and Coudurier, L. (1993) The Si-C-O system. J. Mat. Sci., 28, 489–95.

    CAS  Google Scholar 

  • Deely, G.G., Herbert, J.M. and Moore, N.C. (1961) Dense silicon nitride. Powder Metall., 8, 145–51.

    Google Scholar 

  • Dobson, M.M. (1986) Silicon Carbide Alloys, Research Reports in Materials Science (ed. P.E. Evans), Parthenon Press, Lancashire.

    Google Scholar 

  • Exner, H.E. (1983) Qualitative and quantitative interpretation of microstructures of cemented carbides, in Science of Hard Materials (eds R.K. Viswanadham, D.J. Rowcliffe and J. Gurland), Plenum Press, New York and London, pp. 233–62.

    Google Scholar 

  • Exner, H.E. and Gurland, J. (1970) A review of parameters influencing some mechanical properties of tungsten carbide-cobalt alloys. Powder Metall., 13(25), 13–31.

    CAS  Google Scholar 

  • Fischmeister, H.F. (1983) Development and present status of the science and technology of hard materials, in Science of Hard Materials (eds R.K. Viswanadham, D.J. Rowcliffe and J. Gurland), Plenum Press, New York and London, pp. 1–45.

    Google Scholar 

  • Franz, G., Laubach, B., Wickel, U., Woetting, G. and Gugel, E. (1989) Optimization of a high purity silicon nitride powder concerning sintering and mechanical properties, in Ceramic Materials and Components for Engines (ed. V.J. Tenner), The American Ceramic Society, Westerville, OH, pp. 710–18.

    Google Scholar 

  • Ge, C., Xia, Y. and Chen, L. (1993) Non-oxide additives as sintering aids for Si3N4-based ceramics, in Silicon Nitride Ceramics — Scientific and Technological Advances, MRS Symposium Proceedings Vol. 287 (eds I.-W. Chen, P.F. Becher, M. Mitomo, G. Petzow and T.-S. Yen), Materials Research Society, Pittsburgh, pp. 399–404.

    Google Scholar 

  • German, R.M. (1985) Liquid Phase Sintering, Plenum Press, New York.

    Google Scholar 

  • Gomes, E. (1988) Micrograin tungsten carbide powder for HM, its application and advantages in the cutting tool industries. Proc. Adv. Hard Mat. Prod., 2, 1–8.

    Google Scholar 

  • Greskovich, C. (1979) Hot pressed β-Si3N4 containing small amounts of B and O in solid solution. J. Mat. Sci., 14(12), 2427–38.

    CAS  Google Scholar 

  • Greskovich, C. (1981) Preparation of high density Si3N4 by a gas pressure sintering process. J. Am. Ceram. Soc., 64(12), 725–30.

    CAS  Google Scholar 

  • Greskovich, C. and Prochazka, S. (1987) Selected sintering conditions for silicon carbide and silicon nitride ceramics. Ceram. Microstruct. ’86, Mat. Sci. Res., 21, 601–10.

    CAS  Google Scholar 

  • Greskovich, C. and Rosolowski, J.H. (1976) Sintering of covalent solids. J. Am. Ceram. Soc., 59(7–8), 336–43.

    CAS  Google Scholar 

  • Guillermet, A.F. (1989) Thermodynamic properties of the Co-W-C system. Metall. Trans. A, 20(5), 935–56.

    Google Scholar 

  • Guiton, T.A., Volmering, J.E. and Killinger, K.K. (1992) Optimization of aluminum nitride thermal conductivity via controlled powder processing, in Better Ceramics Through Chemistry, Mat. Res. Soc. Symp. Proc. Vol. 271 (eds M.J. Hampden-Smith, W.G. Klemperer and C.J. Brinker), Materials Research Society, Pittsburgh, pp. 851–56.

    Google Scholar 

  • Gurland, J. (1954) A study of the effect of carbon content on the structure and properties of sintered WC-Co alloys. J. Metals, 4, 285–90.

    Google Scholar 

  • Gurland, J. and Bardzil, P. (1955) Relation of strength, composition, and grain size of sintered WC-Co alloys. J. Metals, 5, 311–15.

    Google Scholar 

  • Hamminger, R., Kruner, H. and Boecker, W. (1992) Liquid phase sintering of covalent ceramics. J. Hard Mat., 3(2), 93–107.

    CAS  Google Scholar 

  • Hausner, H. (1980) Pressureless sintering of non-oxide ceramics. Mat. Sci. Monogr., 6, 582–95.

    CAS  Google Scholar 

  • Hershman, P.R. (1916) Continuous process of producing nitrogenous compounds of aluminum. US Patent 1,188,770.

    Google Scholar 

  • Hirosaki, N., Akimune, Y. and Mitomo, M. (1993) Microstructural design by selective grain growth of β-Si3N4, in Silicon Nitride Ceramics — Scientific and Technological Advances, MRS Symposium Proceedings Vol. 287 (eds I.-W. Chen, P.F. Becher, M. Mitomo, G. Petzow and T.-S. Yen), Materials Research Society, Pittsburgh, pp. 405–10.

    Google Scholar 

  • Hirotsuru, H., Isozaki, K. and Yoshida, A. (1994) Influence of a phase content and particle size distribution of powder on properties of Si3N4. Trans. Mat. Res. Soc. Jpn, 14A, 815–18.

    CAS  Google Scholar 

  • Hoffmann, M.J. (1995) High-temperature properties of SÄ°3N4 ceramics. MRS Bull, 20(2), 28–32.

    CAS  Google Scholar 

  • Hoffmann, M.J. and Petzow, G. (1993) Microstructural design of Si3N4 based ceramics, in Silicon Nitride Ceramics — Scientific and Technological Advances, MRS Symposium Proceedings Vol. 287 (eds I.-W. Chen, P.F. Becher, M. Mitomo, G. Petzow and T.-S. Yen), Materials Research Society, Pittsburgh, pp. 3–14.

    Google Scholar 

  • Hofmann, H., Vogt, U., Kerber, A. and van Dijen, F. (1993) Silicon nitride powder from carbothermal reaction, in Silicon Nitride Ceramics — Scientific and Technological Advances, MRS Symposium Proceedings Vol. 287 (eds I.-W. Chen, P.F. Becher, M. Mitomo, G. Petzow and T.-S. Yen), Materials Research Society, Pittsburgh, pp. 105–20.

    Google Scholar 

  • Homma, K., Yamamoto, F. and Okada, H. (1987) HIP sintering of silicon carbide without additives. Yogyo-Kyokai-Shi, 95(2), 223–28.

    CAS  Google Scholar 

  • Horvath, S.F., Witeck, S.R. and Harmer, M.P. (1989) Effects of carbon and calcium oxide on the sintering behavior of aluminum nitride. Adv. Ceram., 26, 121–32.

    CAS  Google Scholar 

  • Hubbard, C.R., Cavin, B., Newman, R. and Knudsen, A. (1992) High speed, high temperature XRD data collection using a position sensitive detector (PSD). Paper read at 1992 Denver X-Ray Diffraction Conference, 3–6 August, Denver, CO.

    Google Scholar 

  • Hubbard, F.H. (1982) An x-ray diffraction procedure for the estimation of the alpha and beta polymorph proportion in sintered silicon carbide. J. Mat. Sci. Lett., 1, 131–32.

    CAS  Google Scholar 

  • Jack, K.H. (1973) Nitrogen ceramics. Trans. J. Br. Ceram. Soc., 72, 376–84.

    CAS  Google Scholar 

  • Jack, K.H. (1976) Review: Sialons and related nitrogen ceramics. J. Mat. Sci., 11, 1135–58.

    CAS  Google Scholar 

  • Jack, K.H. (1993) Sialon ceramics: retrospect and prospect, in Silicon Nitride Ceramics, Scientific and Technological Advances, MRS Symposium Proceedings Vol. 287 (eds I.-W. Chen, P.F. Becher, M. Mitomo, G. Petzow and T.-S. Yen), Materials Research Society, Pittsburgh, pp. 15–27.

    Google Scholar 

  • Jackson, T.B., Hurford, A.C., Bruner, S.L. and Cutler, R.A. (1989) SiC-based ceramics with improved strength, in Silicon Carbide ’87, Ceramic Transactions Vol. 2 (eds J.D. Cawley and C.E. Semler), The American Ceramic Society, Westerville, OH, pp. 227–40.

    Google Scholar 

  • Jacobsen, N.S., Lee, K.S. and Fox, D.S. (1993) Reaction of silicon carbide and silicon(IV) oxide at elevated temperatures. J. Am. Ceram. Soc., 75(6), 1603–11.

    Google Scholar 

  • Jepps, N.W. and Page, T.F. (1983) Polytypic transformations in silicon carbide, in Crystal Growth and Characterization of Polytype Structures (ed. P. Krishna), Pergamon Press, Oxford, pp. 259–306.

    Google Scholar 

  • Johnson, D.L. (1970) A general model for the intermediate stage of sintering. J. Am. Ceram. Soc., 53(10), 574–77.

    CAS  Google Scholar 

  • Johnson, D.L. and Cutler, I.B. (1963) Diffusion sintering, initial stage sintering models and their application to shrinkage of powder compacts. J. Am. Ceram. Soc., 46(11), 541–45.

    CAS  Google Scholar 

  • Kanzaki, S. (1986) Microstructure control of sintered silicon nitride. Kino Zairyo, 6(6), 5–15.

    CAS  Google Scholar 

  • Kasori, M., Ueno, F. and Tsuge, A. (1994) Effects of transition-metal additions on the properties of AlN. J. Am. Ceram. Soc., 77(8), 1991–2000.

    CAS  Google Scholar 

  • Kawashima, T., Okamoto, H., Yamamoto, H. and Kitamura, A. (1991) Grain size dependence of the fracture toughness of silicon nitride ceramics. Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi, 99(4), 320–23.

    CAS  Google Scholar 

  • Kennedy, P., Shennan, J.V., Braden, P., McLaren, J. and Davidge, R.W. (1973) Assessment of the performance of REFEL silicon carbide under conditions of thermal stress. Proc. Br. Ceram. Soc., 22, 67–87.

    Google Scholar 

  • Kim, W.-J., Kim, D.-K. and Kim, C.-H. (1995) Coating of Y2O3 additive on AlN powder and its effect on the thermal conductivity of AlN ceramics. J. Mat. Synth. Process., 3(1), 39–48.

    CAS  Google Scholar 

  • Kingery, W.D. (1959) Densification during sintering in the presence of a liquid phase: I. J. Appl. Phys., 30(2), 301–06.

    CAS  Google Scholar 

  • Kingery, W.D. and Berg, M. (1955) Study of the initial stages of sintering solids by viscous flow, evaporation-condensation, and self-diffusion. J. Appl. Phys., 26(10), 1205–12.

    CAS  Google Scholar 

  • Kingery, W.D., Niki, E. and Narasimhan, M.D. (1961) Sintering of oxide and carbide-metal composition in presence of a liquid phase. J. Am. Ceram. Soc., 44, 29–35.

    CAS  Google Scholar 

  • Kistler-De Coppi, P. A. and Richarz, W. (1986) Phase transformations and grain growth in silicon carbide powders. Int. J. High Technol. Ceram., 2, 99–111.

    CAS  Google Scholar 

  • Knoch, H., Sigl, L. and Long, W.D. (1990) Product development with pressureless sintered SiC, in Proceedings of the Thirty-Seventh Sagamore Army Materials (ed. D. Viechnicki), Research Conference, Plymouth, Massachusetts, US Army Materials Laboratory, pp. 78–87.

    Google Scholar 

  • Komeya, K. (1985) Development of aluminum nitride ceramics. Ceramics (Jpn), 20(6), 506–12.

    CAS  Google Scholar 

  • Komeya, K. (1993) Progress in silicon nitride ceramics in Japan, in Silicon Nitride Ceramics — Scientific and Technological Advances, MRS Symposium Proceedings Vol. 287 (eds I.-W. Chen, P.F. Becher, M. Mitomo, G. Petzow and T.-S. Yen), Materials Research Society, Pittsburgh, pp. 29–38.

    Google Scholar 

  • Komeya, K. and Inoue, H. (1969) Sintering of aluminum nitride: particle size dependence of sintering kinetics. J. Mat. Sci., 4, 1045–50.

    CAS  Google Scholar 

  • Komeya, K. and Inoue, H. (1971) Influence of fibrous aluminum nitride on the strength of sintered aluminum nitride yttria. Trans. J. Br. Ceram. Soc., 76(3), 108–13.

    Google Scholar 

  • Komeya, K. and Noda, F. (1974) Aluminum nitride and silicon nitride for high-temperature vehicular gas turbine engines. Toshiba Rev., 92, 13–18.

    CAS  Google Scholar 

  • Komeya, K., Inoue, H. and Tsuge, A. (1974) Role of Y2O3 and SiO2 additions in sintering of AlN. J. Am. Ceram. Soc., 57(9), 411–12.

    CAS  Google Scholar 

  • Komeya, K., Inoue, H. and Tsuge, A. (1981) Effect of various additives on sintering of aluminum nitride. Yogyo-Kyokai-Shi, 89(6), 330–36.

    CAS  Google Scholar 

  • Kuczynski, G.C. (1963) Theory of solid state sintering. Powder Metall., 11–30.

    Google Scholar 

  • Kuo, S.-H. and Virkar, A.V. (1989) Phase equilibria and phase transformation in the aluminum nitride-aluminum oxycarbide pseudobinary system. J. Am. Ceram. Soc., 73(4), 540–50.

    Google Scholar 

  • Kuramoto, N., Taniguchi, H. and Aso, I. (1989) Sintering and properties of high-purity aluminum nitride ceramics. Adv. Ceram. (Ceram. Substr. Pack. Electron. Appl.), 26, 107–19.

    CAS  Google Scholar 

  • Kuramoto, N., Taniguchi, H., Numata, Y. and Aso, I. (1985) Sintering process of translucent AlN and effect of impurities on thermal conductivity of AlN ceramics. Yogyo-Kyokai-Shi, 93(9), 41–6.

    Google Scholar 

  • Lange, F.F. (1973) Relation between strength, fracture energy, and microstructure of hot-pressed S3N4. J. Am. Ceram. Soc., 56(10), 518–22.

    CAS  Google Scholar 

  • Lange, F.F. (1978) Phase relations in the system silicon nitride-silicon dioxide-magnesium oxide and their interrelation with strength and oxidation. J. Am. Ceram. Soc., 61(1–2), 53–56.

    CAS  Google Scholar 

  • Lange, F.F. (1979) Fracture toughness of Si3N4 as a function of the initial α-phase content. J. Am. Ceram. Soc., 62(7–8), 428–30.

    CAS  Google Scholar 

  • Lange, F.F. (1983) High temperature deformation and fracture phenomena of polyphase Si3N4 materials, in Progress in Nitrogen Ceramics (ed. F.L. Riley), Martinus Nijhoff Publishers, Boston/ The Hague/Dordrecht/Lancaster, pp. 467–90.

    Google Scholar 

  • Larker, H., Adlerborn, J. and Boham, H. (1977) Fabricating dense silicon nitride parts by hot isostatic pressing, in Proceedings International Automotive Engineering Congress and Exposition, SAE Paper 770335.

    Google Scholar 

  • Lorenz, J., Weiss, J. and Petzow, G. (1982) Dense silicon nitride (Si3N4) alloys: phase relations and consolidation, microstructure and properties, in Proceedings Advances in Powder Technology (ed. G.Y. Chin), ASM, Metals Park, OH, pp. 289–308.

    Google Scholar 

  • Lumby, R.J. and Coe, R.F. (1970) The influence of some process variables on the mechanical properties of hot-pressed silicon nitride. Proc. Br. Ceram. Soc., 15, 91–101.

    Google Scholar 

  • May, T.C. (1979) Soft errors in VLS1 — present and future, in Proceedings 29th Electronics Components Conference, The Institute of Electrical and Electronic Engineers, New York, pp. 247–56.

    Google Scholar 

  • McCauley, J. and Corbin, N. (1983) High temperature reactions and microstructures in the Al2O3-AlN system, in Progress in Nitrogen Ceramics (ed. F.L. Riley), Martinus Nijhoff Publishers, Boston/ The Hague/Dordrecht/Lancaster, pp. 111–20.

    Google Scholar 

  • Meredith, B. and Milner, D.R. (1976) Densification mechanism in the tungsten carbide-cobalt system. Powder Metall., 1, 38–45.

    Google Scholar 

  • Mitomo, M. (1976) Pressure sintering of Si3N4. J. Mat. Sci., 11, 1103–06.

    CAS  Google Scholar 

  • Mitomo, M. (1986) Liquid phase sintering of silicon nitride. Taikabutsu, 38(8), 561.

    CAS  Google Scholar 

  • Mitomo, M. and Mizuno, K. (1986) Sintering behavior of Si3N4 with Y2O3 and Al2O3 addition. Yogyo Kyokaishi, 94, 106–11.

    Google Scholar 

  • Mitomo, M. and Uenosono, S. (1992) Micro-structural development during gas-pressure sintering of a-silicon nitride. J. Am. Ceram. Soc., 75(1), 103–08.

    CAS  Google Scholar 

  • Mitomo, M., Inomata, Y. and Kumanomido, M. (1970) Effect of aluminum doping on the thermal stability of 4H and 6H SiC. Yogyo-Kyokai-Shi, 78(899), 224–28.

    CAS  Google Scholar 

  • Mitomo, M., Tsutsumi, M., Tanaka, H., Uenosono, S. and Saito, F. (1990) Grain growth during gas-pressure sintering of β-silicon nitride. J. Am. Ceram. Soc., 73(8), 2441–45.

    CAS  Google Scholar 

  • Murata, Y. and Smoak, R.H. (1978) Densification of silicon carbide by the addition of BN, BP, and B4C and correlation to their solid solubilities, in Proceedings International Symposium on Factors in Densification and Sintering of Oxide and Non-Oxide Ceramics, Hakone, Japan, October (eds S. Somiya and S. Saito), Gakujutsu Bunken, Tokyo, pp. 382–99.

    Google Scholar 

  • Negita, K. (1985) Ionic radii and electronegativities of effective sintering aids for Si3N4 ceramics. J. Mat. Sci. Lett., 4, 417–18.

    CAS  Google Scholar 

  • Negita, K. (1986) Effective sintering aids for silicon carbide ceramics: reactivities of silicon carbide with various additives. J. Am. Ceram. Soc., 69(12), C308–10.

    Google Scholar 

  • Ness, E.A. and Rafaniello, W. (1994) Origin of density gradients in sintered β-silicon carbide parts. J. Am. Ceram. Soc., 77(11), 2879–84.

    CAS  Google Scholar 

  • O’Reilly, K.P.J., Redington, M., Hampshire, S. and Leigh, M. (1993) Parameters affecting pressureless sintering of α’-sialons with lanthanide modifying cations, in Silicon Nitride Ceramics — Scientific and Technological Advances, MRS Symposium Proceedings Vol. 287 (eds I.-W. Chen, P.F. Becher, M. Mitomo, G. Petzow and T.-S. Yen), Materials Research Society, Pittsburgh, pp. 393–98.

    Google Scholar 

  • Oyama, Y. (1972) Solid solutions in the ternary system silicon nitride-aluminum nitride-aluminum oxide. Jpn J. Appl. Phys., 11(5), 760–61.

    CAS  Google Scholar 

  • Paquette, M.S., Board, J.L., Haney, C.N., Knudsen, A.K., Susnitzky, D.W., Rudolf, P.R., Beaman, D.R., Newman, R.A. and Foelicher, S.W. (1990) Chemistry and physical characterization of aluminum nitride powder, in Ceramic Powder Science III (eds G.L. Messing, S. Hirano and H. Hausner), The American Ceramic Society, Westerville, OH, pp. 855–64.

    Google Scholar 

  • Pasto, A.E. (1984) Causes and effects of Fe-bearing inclusions in sintered Si3N4. J. Am. Ceram. Soc., 67(8), C178–80.

    CAS  Google Scholar 

  • Pastor, H. (1987) Present status and development of tool materials: Part 1, cutting tools. Int. J. Refract. Hard Met.6(4), 196–209.

    CAS  Google Scholar 

  • Ponthieu, E., Grange, P., Delmon, B., Lonnoy, L., Leclercq, L., Bechara, R. and Gimblot, J. (1991) Proposal of a composition model for commercial AlN powders. J. Eur. Ceram. Soc., 8, 233–41.

    CAS  Google Scholar 

  • Potter, G.E., Knudsen, A.K., Tou, J.C. and Choudhury, A. (1992) Measurement of the oxygen and impurity distribution in polycrystalline aluminum nitride with secondary ion mass spectrometry. J. Am. Ceram. Soc., 75(12), 3215–24.

    CAS  Google Scholar 

  • Prakash, L.J. (1989) Properties of submicron WC-based cemented carbides. Met. Powder Rep., 44(12), 835–38.

    Google Scholar 

  • Prakash, L.J. (1995) Application of fine grained tungsten carbide based cemented carbides. Int. J. Refract. Met. Hard Mat., 13, 257–64.

    CAS  Google Scholar 

  • Prochazka, S. (1974) Sintering of SiC, in Proceedings of the Conference on Ceramics for High Performance Applications (eds J.J. Burke, A.E. Gorum and R.M. Katz), Brooke Hill Publ. Co., MA, pp. 239–52.

    Google Scholar 

  • Prochazka, S. (1975) The role of boron and carbon in the sintering of silicon carbide, in Special Ceramics 6 (ed. P. Popper), British Ceramic Research Association, Stoke-on-Trent, pp. 171–82.

    Google Scholar 

  • Prochazka, S. and Bobik, C. (1980) Sintering of aluminum nitride. Mat. Sci. Res., 13, 321–32.

    CAS  Google Scholar 

  • Prochazka, S. and Rocco, W. (1978) High pressure hot-pressing of silicon nitride powders, in Processing of Crystalline Ceramics, Materials Science Research Vol. 11 (eds H. Palmer III, R.F. Davis and T.M. Hare), Plenum Press, New York, pp. 615–25.

    Google Scholar 

  • Prochazka, S., Giddings, R.A. and Johnson, C.A. (1975) Investigation of ceramics for high temperature components. US NTIS AD/A Report No. 005 830.

    Google Scholar 

  • Pyzik, A.J. and Carroll, D.F. (1994) Technology of self-reinforced silicon nitride. Ann. Rev. Mat. Sci., 24, 189–214.

    CAS  Google Scholar 

  • Pyzik, A.J., Carroll, D.F. and Hwang, C.J. (1993) The effect of glass chemistry on the micro-structure and properties of self-reinforced silicon nitride, in Silicon Nitride Ceramics — Scientific and Technological Advances, MRS Symposium Proceedings Vol. 287 (eds I.-W. Chen, P.F. Becher, M. Mitomo, G. Petzow and T.-S. Yen), Materials Research Society, Pittsburgh, pp. 411–16.

    Google Scholar 

  • Rafaniello, W., Paquette, M. and Rey, T. (1990) Examination of commercial aluminum nitride powders, in Ceramic Powder Science III, Ceramic Transactions Vol. 12 (eds G.L. Messing, S. Hirano and H. Hausner), The American Ceramic Society, Westerville, OH, pp. 865–74.

    Google Scholar 

  • Ramsdell, L.S. (1947) Studies on silicon carbide. Am. Mineralogist, 32, 64–81.

    CAS  Google Scholar 

  • Riley, F.L. (1985) Production, properties, and applications of silicon nitride ceramics. Wld Ceram., 2, 84–90.

    Google Scholar 

  • Rudy, E. (1969) Compendium of Phase Diagram Data. AFML-TR-65–2 Part V. Air Force Material Laboratory, Wright Patterson AFB, OH.

    Google Scholar 

  • Ruska, J., Gauckler, L.S., Lorenz, J. and Rexer, H.U. (1979) The quantitative calculation of SiC polytypes from measurements of X-ray diffraction peak intensities. J. Mat. Sci., 14, 2013–17.

    CAS  Google Scholar 

  • Sakai, T. and Iwata, M. (1977) Effect of oxygen on sintering of AlN. J. Mat. Sci., 12, 1659–65.

    CAS  Google Scholar 

  • Sanders, W.A. and Mieskowski, D.M. (1985) Strength and microstructure of sintered Si3N4 with rare-earth-oxide additions. Bull. Am. Ceram. Soc., 64(2), 304–09.

    CAS  Google Scholar 

  • Sasaki, M., Suzuki, K., Nishimura, N. and Noshiro, M. (1987) Microstructures of pressureless sintered silicon carbide with additions of aluminum oxide, in High Tech Ceramics (ed. P. Vincenzini), Elsevier, Amsterdam, pp. 1101–08.

    Google Scholar 

  • Schneider, G. (1989) Principles of Tungsten Carbide Engineering, Society of Carbide and Tool Engineers, Materials Park, OH.

    Google Scholar 

  • Schröter, K. (1923) German Patent 420689.

    Google Scholar 

  • Schröter, K. (1925) German Patent 434527.

    Google Scholar 

  • Schubert, W.D., Bock, A. and Lux, B. (1995) General aspects and limits of conventional ultrafine WC powder manufacture and hard metal production. Int. J. Refract. Met. Hard Mat., 13, 281–96.

    CAS  Google Scholar 

  • Schuster, J.C. (1987) Phase diagrams relevant for sintering aluminum nitride based ceramics. Rev. Chim. Miner., 24(6), 676–86.

    CAS  Google Scholar 

  • Schwetz, K.A. (1989) Silicon carbide and its high-technology ceramics. Radex-Rundschau, 1, 26–39.

    Google Scholar 

  • Schwetz, K.A. and Lipp, A. (1980) The effect of boron and aluminum sintering additives on the properties of dense sintered alpha silicon carbide. Sci. Ceram., 10, 149–58.

    CAS  Google Scholar 

  • Schwetz, K.A., Knoch, H. and Lipp, A. (1983) Sintering of aluminum nitride with low oxide addition, in Progress in Nitrogen Ceramics (ed. F.L. Riley), Martinus Nijhoff Publishers, Boston/The Hague/Dordrecht/Lancaster, pp. 245–52.

    Google Scholar 

  • Seitz, K., Hessel, F., Guether, H., Roosen, A. and Aldinger, F. (1991) Comparison of the surface characteristics of alumina and aluminum nitride powders, in Ceramic Powder Science IV, Ceramic Transactions Vol. 22 (eds S. Hirano, G. Messing and H. Hausner), The American Ceramic Society, Westerville, OH, pp. 227–34.

    Google Scholar 

  • Shinozaki, S. and Kinsman, K.R. (1978) Evolution of microstructure in polycrystalline silicon carbide, in Processing of Crystalline Ceramics, Materials Science Research Vol. 11 (eds H. Palmer III, R.F. Davis and T.M. Hare), Plenum Press, New York, pp. 641–52.

    Google Scholar 

  • Shinozaki, S., Hangas, J., Maeda, K. and Soeta, A. (1988) Enhanced formation of 4H polytype in silicon carbide materials, in Silicon Carbide ’87, Ceramic Transactions Vol. 2 (eds J.D. Cawley and C.E. Semler), The American Ceramic Society, Westerville, OH, pp. 113–21.

    Google Scholar 

  • Skeele F.P. and Rafaniello, W. (1990) Processing of aluminum nitride ceramics, in Proceedings of the Thirty-Seventh Sagamore Army Materials (ed. D. Viechnicki), Research Conference, Plymouth, Massachusetts, US Army Materials Laboratory, pp. 297–306.

    Google Scholar 

  • Slack, G.A. (1973) Nonmetallic crystals with high thermal conductivity. J. Phys. Chem. Solids, 34, 321–35.

    CAS  Google Scholar 

  • Slack, G.A. and McNelly, T.F. (1976) Growth of high purity AlN crystals. J. Cryst. Growth, 34, 263–79.

    CAS  Google Scholar 

  • Slack, G.A., Tanzilli, R.A., Pohl, R.O. and Vandersande, J.W. (1987) The intrinsic thermal conductivity of AlN. J. Phys. Chem. Solids, 48(7), 641–47.

    CAS  Google Scholar 

  • Spriggs, G.E. (1995) A history of fine grained hardmetal. Int. J. Refract. Met. Hard Mat., 13, 241–55.

    CAS  Google Scholar 

  • Tajima, Y. (1993) Development of high performance silicon nitride ceramics and their applications, in Silicon Nitride Ceramics — Scientific and Technological Advances, MRS Symposium Proceedings Vol. 287 (eds I.-W. Chen, P.F. Becher, M. Mitomo, G. Petzow and T.-S. Yen), Materials Research Society, Pittsburgh, pp. 189–96.

    Google Scholar 

  • Tajima, Y. and Kingery, W.D. (1982) Solid solubility of A1 and B in SiC. J. Am. Ceram. Soc., 65(2), C27–29.

    CAS  Google Scholar 

  • Tanaka, H., Inomata, Y., Hara, K. and Hasegawa, H. (1985) Normal sintering of Al-doped β-SiC. J. Mat. Sci. Lett., 4, 315–17.

    CAS  Google Scholar 

  • Taylor, K.M. and Lenie, C. (1960) Some properties of aluminum nitride. J. Electrochem. Soc., 107(4), 308–14.

    CAS  Google Scholar 

  • Thuemmler, F. (1980) Sintering and high temperature properties of silicon nitride and silicon carbide. Mat. Sci. Res., 13 (Sint. Process.), 247–77.

    CAS  Google Scholar 

  • Tsuge, A., Nishida, K. and Komatsu, M. (1975) Effect of crystallizing the grain-boundary glass phase on the high temperature strength of hot-pressed silicon nitride containing yttrium oxide. J. Am. Ceram. Soc., 58(7–8), 323–26.

    CAS  Google Scholar 

  • Virkar, A.V., Jackson, T.B. and Cutler, R.A. (1989) Thermodynamic and kinetic effects of oxygen removal on the thermal conductivity of aluminum nitride. J. Am. Ceram. Soc., 72(11), 2031–42.

    CAS  Google Scholar 

  • Warren, R. and Walderon, M.B. (1972) Microstructural development during the liquid-phase sintering of cemented carbides. Powder Metall., 15(30), 166–201.

    CAS  Google Scholar 

  • Watari, K., Brito, M.E., Yasuoka, M., Valecillos, M.C. and Kanzaki, S. (1995) Influence of powder characteristics on sintering process and thermal conductivity of aluminum nitride ceramics. Nippon Seramikkusu Kyokai Gakujutsu Ronbunshi (J. Ceram. Soc. Japan), 103(9), 891–900.

    CAS  Google Scholar 

  • Weimer, A., Cochran, G., Eisman, G., Henley, J., Hook, B., Mills, L., Guiton, T., Knudsen, A., Nicholas, N., Volmering, J. and Moore, W. (1994) Rapid process for manufacturing aluminum nitride powder. J. Am. Ceram. Soc., 77(1), 3–18.

    CAS  Google Scholar 

  • Williams, R., Juterbock, B., Shinizaki, A., Peters, C. and Whalen, T. (1985) Effect of sintering temperature on the physical and crystallographic properties of β-SiC. Bull. Am. Ceram. Soc., 64(10), 1385–93.

    CAS  Google Scholar 

  • Wills, R.R. and Brockway, M.C. (1981) Hot isostatic pressing of silicon base ceramics. Technical Report AFWAL-TR-80–4193, AFWAL/MLLM, Wright Patterson AFB, OH.

    Google Scholar 

  • Woetting, G. and Hausner, H. (1983) Influence of powder properties and processing parameters on the sintering of silicon nitride, in Progress in Nitrogen Ceramics (ed. F.L. Riley), Martinus Nijhoff Publishers, Boston/The Hague/Dordrecht/Lancaster, pp. 211–18.

    Google Scholar 

  • Woetting, G. and Ziegler, G. (1983) Influence of powder properties and processing conditions on microstructure and properties of sintered Sì3N4, in Ceramic Powders (ed. P. Vincenzini), Elsevier, Amsterdam, pp. 951–62.

    Google Scholar 

  • Woetting, G. and Ziegler, G. (1986) Powder characteristics and sintering behavior of silicon nitride powders. Powder Metall. Int., 18(1), 25–32.

    CAS  Google Scholar 

  • Woetting, G., Feuer, H. and Gugel, E. (1993) The influence of powder and processing methods on microstructure and properties of dense silicon nitride, in Silicon Nitride Ceramics — Scientific and Technological Advances, MRS Symposium Proceedings Vol. 287 (eds I.-W. Chen, P.F. Becher, M. Mitomo, G. Petzow and T.-S. Yen), Materials Research Society, Pittsburgh, pp. 133–46.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Chapman & Hall

About this chapter

Cite this chapter

Rafaniello, W. (1997). Critical Powder Characteristics. In: Weimer, A.W. (eds) Carbide, Nitride and Boride Materials Synthesis and Processing. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0071-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0071-4_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6521-4

  • Online ISBN: 978-94-009-0071-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics