Skip to main content

Fiber Synthesis Processes

  • Chapter

Abstract

This chapter reviews the preparation, composition, structure and properties of ceramic fibers derived from polymeric precursors. Those fibers which have reached a commercial or developmental status will be emphasized. The intent is to show the close relationship between process, structure and properties for ceramic fibers which have been derived from polymers (Figure 17.1).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Babonneau, F., Livage, J., Soraru, G.D., Carturan, G. and Mackenzie, J.D. (1990) SiC/TiC ceramics via polymer route: a structural investigation. New J. Chem., 14(6–7), 539–44.

    CAS  Google Scholar 

  • Baney, R.H. and Chandra, G. (1988) Preceramic polymers, in Encyclopedia of Polymer Science and Engineering, Vol. 13, 2nd edn, Wiley, New York, pp. 312–44.

    Google Scholar 

  • Bender, B.A., Wallace, J.S. and Schrodt, D.J. (1991) Effect of thermochemical treatments on the strength and microstructure of SiC fibers. J. Mater. Sci., 26(4), 970–76.

    CAS  Google Scholar 

  • Bhatt, R.T., Garg, A. and Hull, D.R. (1994) Microstructural and strength stability of a developmental CVD SiC fiber. Ceram. Trans., 46, 3–16.

    CAS  Google Scholar 

  • Bibbo, G.S., Benson, P.M. and Pantano, C.G. (1991) Effect of carbon monoxide partial pressure on the high-temperature decomposition of NICALON fiber. J. Mater. Sci., 26(18), 5075–80.

    Article  CAS  Google Scholar 

  • Bunsell, A.R., Simon, G., Abe, Y. and Akiyama, M. (1988) Ceramic fibers, in Fiber Reinforcements for Composite Materials (ed. A.R. Bunsell), Elsevier, New York, pp. 427–78.

    Google Scholar 

  • Cannady, J.P. (1985a) Silicon-nitride containing ceramics. US Patent 4,535,007.

    Google Scholar 

  • Cannady, J.P. (1985b) Hydridosilazane polymers from (R3Si)2NH and HSiCl3. US Patent 4,540,803.

    Google Scholar 

  • Chaim, R., Heuer, A.H. and Chen, R.T. (1988) Microstructural and microchemical characterization of silicon carbide and silicon carbonitride ceramic fibers produced from polymer precursors. J. Am. Ceram. Soc., 71(11), 960–69.

    Article  CAS  Google Scholar 

  • Chang, Y.W., Zangvil, A. and Lipowitz, J. (1990) Characterization of Si, C, N, O fibers by analytical STEM and scanning Auger techniques. Ceram. Trans. (Silicon Carbide ’87), 2, 435–43.

    Google Scholar 

  • Clark, T.J., Jaffe, M., Rabe, J. and Langley, N.R. (1986). Thermal stability characterization of SiC ceramic fibers: I, mechanical property and chemical structure effects. Ceram. Eng. Sci. Proc., 7(7–8), 901–13.

    Article  CAS  Google Scholar 

  • Deleeuw, D.C., Lipowitz, J. and Lu, P.P. (1991) Preparation of substantially crystalline silicon carbide fibers from polycarbosilane. US Patent 5,071,600.

    Google Scholar 

  • Filipuzzi, L. and Naslain, R. (1991) Oxidation kinetics of SiC-based ceramic fibers, in Advanced Structural Inorganic Composites (ed. P. Vincenzini), Elsevier, New York, pp. 35–46.

    Google Scholar 

  • Fischbach, D.B., Lemoine, P.M. and Yen, G.V. (1988) Mechanical properties and structure of a new commercial SiC-type fiber (TYRANNO). J. Mater. Sci., 23(3), 987–93.

    Article  CAS  Google Scholar 

  • Fitzer, E. and Heine, M. (1988) Carbon fiber manufacture and surface treatment, in Fiber Reinforcements for Composite Materials (ed. A.R. Bunsell), Elsevier, New York, pp. 79–148.

    Google Scholar 

  • Funayama, O., Arai, M., Tashiro, Y., Aoki, H., Suzuki, T., Tamura, K., Kaya, H., Nishii, H. and Isoda, T. (1990) Tensile strength of silicon nitride fibers produced from perhydrosilazane. J. Ceram. Soc. Jpn Int. Edn, 98(1), 104–07.

    Article  CAS  Google Scholar 

  • Goda, K. and Fukunaga, H. (1986) The evaluation of the strength distribution of silicon carbide and alumina fibers by a multi-modal Weibull distribution. J. Mater. Sci., 21(12), 4475–80.

    Article  CAS  Google Scholar 

  • Gogotsi, Y.G. and Yoshimura, M. (1995) Low-temperature oxidation, hydrothermal corrosion, and their effects on properties of SiC (Tyranno) fibers. J. Am. Ceram. Soc., 78(6), 1439–50.

    Article  CAS  Google Scholar 

  • Haider, M.I. and Clark, T.J. (1986) Conversion of chemically-derived polymeric precursors to high performance ceramic fibers. Mater. Res. Soc. Symp. Proc., 73, 413–18.

    Article  CAS  Google Scholar 

  • Hasegawa, Y. and Okamura, K. (1983) Synthesis of continuous silicon carbide fiber. Part 3. Pyrolysis process of polycarbosilane and structure of the products. J. Mater. Sci., 18(12), 3633–48.

    Article  CAS  Google Scholar 

  • Hasegawa, Y. and Okamura, K. (1986) Synthesis of continuous silicon carbide fiber. Part 4. The structure of polycarbosilane as the precursor. J. Mater. Sci., 21(1), 321–28.

    Article  CAS  Google Scholar 

  • Hasegawa, Y., Iimura, M. and Yajima, S. (1980) Synthesis of continuous silicon carbide fiber. Part 2. Conversion of polycarbosilane fiber into silicon carbide fibers. J. Mater. Sci., 15(3), 720–28.

    Article  CAS  Google Scholar 

  • Jaskowiak, M.H. and DiCarlo, J.A. (1989) Pressure effects on the thermal stability of silicon carbide fibers. J. Am. Ceram. Soc., 72(2), 192–97.

    Article  CAS  Google Scholar 

  • Johnson, S.M., Brittain, R.D., Lamoreaux, R.H. and Rowcliffe, D.J. (1988) Degradation mechanisms of silicon carbide fibers. J. Am. Ceram. Soc., 71(3), C-132–35.

    Article  CAS  Google Scholar 

  • Kim, H.E. and Moorhead, A.J. (1991) Strength of NICALON silicon carbide fibers exposed to high-temperature gaseous environments. J. Am. Ceram. Soc., 74(3), 666–69.

    Article  CAS  Google Scholar 

  • Laffon, C., Flank, A.M., Lagarde, P., Laridjani, M., Hagege, R., Olry, P., Cotteret, J., Dixmier, J. and Miquel, J.L. (1989) Study of NICALON-based ceramic fibers and powders by EXAFS spectrometry, x-ray diffractometry and some additional methods. J. Mater. Sci., 24(4), 1503–12.

    Article  CAS  Google Scholar 

  • Laine, R.M., Zhang, Z.-F., Chew, K.W., Kannisto, M. and Scott, C. (1995) Synthesis and processing of silicon carbide fibers: state-of-the-art. Ceram. Trans., 51 (Ceram. Process. Sci. Technol.), 179–86.

    CAS  Google Scholar 

  • Langley, N.R., LeGrow, G.E. and Lipowitz, J. (1990) Properties of ceramic fibers from organosilicon polymers, in Fiber Reinforced Ceramic Composites (ed. K.S. Mazdiyasni), Noyes, Park Ridge, NJ, pp. 63–92.

    Google Scholar 

  • LeGrow, G.E., Lim, T.F., Lipowitz, J. and Reaoch, R.S. (1987) Ceramics from hydridopolysilazane. Am. Ceram. Soc. Bull., 66(2), 363–67.

    CAS  Google Scholar 

  • LeGrow, G.E., Lim, T.F., Lipowitz, J. and Reaoch, R.S. (1988) Ceramic fibers from hydridopolysilazane. J. Chim. Phys., 83(11), 869–73.

    Google Scholar 

  • Li, C.T. (1990) A simplified method for capturing primary fracture surfaces for fractographic analysis. J. Mater. Sci. Lett., 9(2), 233–34.

    Article  Google Scholar 

  • Li, C.T. and Langley, N.R. (1985) Improvement in fiber testing of high-modulus single-filament materials. J. Am. Ceram. Soc., 68(8), C-202–04.

    Article  Google Scholar 

  • Lipowitz, J. and Turner, G.L. (1991) 29Si and 13C magic angle sample spinning nuclear magnetic resonance spectroscopy of ceramic fibers prepared by pyrolysis of organosilicon polymers, in Solid State NMR of Polymers (ed. L. Mathias), Plenum, New York, pp. 305–20.

    Google Scholar 

  • Lipowitz, J., Rabe, J.A. and Zank, G.A. (1991) Polycrystalline SiC fibers from organosilicon polymers. (Paper read at 15th Annual Conference on Composites and Advanced Ceramics, 13–16 January 1991.) Ceram. Eng. Sci. Proc., 12(9–10), 1819–31.

    Google Scholar 

  • Lipowitz, J., Freeman, H.A., Chen, R.T. and Prack, E.R. (1987) Composition and structure of ceramic fibers prepared from polymer precursors. Adv. Ceram. Mater., 2(9–10), 1819–31.

    Google Scholar 

  • Lipowitz, J., Rabe, J. A., Frevel, L.K. and Miller, R.L. (1990) Characterization of nanoporosity in polymer-derived ceramic fibers by x-ray scattering techniques. J. Mater. Sci., 25(4), 2118–24.

    Article  CAS  Google Scholar 

  • Lipowitz, J., Rabe, J.A., Orr, L.D. and Androl, R.R. (1994) Polymer derived stoichiometric SiC fibers. Mater. Res. Soc. Symp. Proc. Vol., 350, 99–104.

    Article  CAS  Google Scholar 

  • Luthra, K.L. (1986) Thermochemical analysis of the stability of continuous silicon carbide fibers. J. Am. Ceram. Soc., 69(10), C231–33.

    Article  CAS  Google Scholar 

  • Mah, T.I., Hecht, N.L., McCullum, D.E., Hoenig- man, J.R., Kim, H.M., Katz, A.P. and Lipsitt, H.A. (1984) Thermal stability of SiC fibers (NICALON). J. Mater. Sci., 19(4), 1191–201.

    Article  CAS  Google Scholar 

  • Mah, T.I., Mendiratta, M.G., Katz, A.P. and Mazdiyasni, K.S. (1987) Recent developments in fiber-reinforced high temperature ceramic composites. Am. Ceram. Soc. Bull, 66(2), 304–08, 317.

    CAS  Google Scholar 

  • Maniette, Y. and Oberlin, A. (1989) TEM characterization of some crude or air heat-treated silicon carbide NICALON fibers. J. Mater. Sci., 24(9), 3361–70.

    Article  CAS  Google Scholar 

  • Mazdiyasni, K.S. (ed.) (1990) Fiber Reinforced Ceramic Composites: Materials, Processing and Technology, Elsevier, Park Ridge, NJ.

    Google Scholar 

  • Murthy, V.S.R., Lewis, M.H., Smith, M.E. and Dupree, R. (1989) Structure and degradation of TYRANNO fibers. Mater. Lett., 8(8), 263–68.

    Article  CAS  Google Scholar 

  • Muto, N., Miyayama, M., Yanagida, H., Kajiwara, T., Mori, N., Ichikawa, H. and Harada, H. (1990a) Fast response to infrared radiation in SiC fibers. Ceram. Trans., 15, 661–73.

    CAS  Google Scholar 

  • Muto, N., Miyayama, M., Yanagida, H., Kajiwara, T., Mori, N., Ichikawa, H. and Harada, H. (1990b) Infrared detection by Si-Ti-C-O fibers. J. Am. Ceram. Soc., 73(2), 443–5.

    Article  CAS  Google Scholar 

  • Okamura, K. and Hasegawa, Y. (1990) High purity and high strength inorganic silicon nitride continuous fiber. US Patent 4,954,461.

    Google Scholar 

  • Okamura, K., Sato, M. and Hasegawa, Y. (1987) Silicon nitride fibers and silicon oxynitride fibers obtained by the nitridation of polycarbosilane. Ceram. Int., 13(1), 55–61.

    Article  CAS  Google Scholar 

  • Porte, L. and Sartre, A. (1989) Evidence for a silicon oxycarbide phase in the NICALON silicon carbide fiber. J. Mater. Sci., 24(1), 271–75.

    Article  CAS  Google Scholar 

  • Rabe, J.A. and Bujalski, D.R. (1988) Process for preparing ceramic materials with reduced carbon levels. US Patent 4,761,389.

    Google Scholar 

  • Rabe, J.A. and Lipowitz, J. (1991) Curing preceramic polymer by exposure to nitrogen dioxide. US Patent 5,051,215.

    Google Scholar 

  • Reinhart, T.J. (1987) Introduction to composites. Engineered Materials Handbook, Vol. 1 (ed. T.J. Reinhart), ASM International, Metals Park, OH, pp. 27–34.

    Google Scholar 

  • Rugg, K.L., Giannuzzi, L.A. and Tressler, R.E. (1994) The time dependent high temperature mechanism behavior of polycrystalline α-SiC fibers. Ceram. Trans., 46, 29–40.

    CAS  Google Scholar 

  • Salinger, R.M., Barnard, T.D., Li, C.T. and Mahone, L.G. (1988) Utilization of polymer precursors in the formation of silicon-nitrogen-carbon advanced ceramic fibers. SAMPE Q., 19(3), 27–30.

    CAS  Google Scholar 

  • Sasaki, Y., Nishina, Y., Sato, M. and Okamura, K. (1987) Raman study of SiC fibers made from polycarbosilane. J. Mater. Sci., 22(2), 443–8.

    Article  CAS  Google Scholar 

  • Sawyer, L.C., Chen, R.T., Haimbach IV, F., Harget, P.J., Prack, E.R. and Jaffe, M. (1986) Thermal stability characterization of SiC ceramic fibers II, fractography and structure. Ceram. Eng. Sci. Proc., 7(7–8), 914–30.

    Article  CAS  Google Scholar 

  • Sawyer, L.C., Jamieson, M., Brikowski, D., Haider, M.I. and Chen, R.T. (1987) Strength, structure, and fracture properties of ceramic fibers produced from polymeric precursors. I, base-line studies. J. Am. Ceram. Soc., 70(11), 798–810.

    Article  CAS  Google Scholar 

  • Schilling, C.L., Wesson, J.P. and Williams, T.C. (1983) Polycarbosilane precursors for silicon carbide. Am. Ceram. Soc. Bull., 62(8), 812–15.

    Google Scholar 

  • Silverman, L.A., Hewett, W.D., Blatchford, T.P. and Beeler, A.J. (1991) Silicon carbide fibers from slurry spinning. J. Appl. Polym. Sci., Appl. Polym. Symp. 47 (Sci. Technol. Fibers Related Mater.), 99–109.

    Article  CAS  Google Scholar 

  • Soraru, G.D., Glisenti, A., Granozzi, G., Babonneau, F. and Mackenzie, J.D. (1990) The pyrolysis process of a polytitanocarbosilane into SiC/TiC ceramics: an XPS study. J. Mater. Res., 5(9), 1958–62.

    Article  CAS  Google Scholar 

  • Takeda, M., Imai, Y., Ichikawa, H., Ishikawa, T. and Seguchi, T. (1991) Properties of the low oxygen content SiC fiber on high temperature heat treatment. Ceram. Eng. Sci. Proc., 12(7–8), 1007–18.

    Article  CAS  Google Scholar 

  • Toreki, W., Batich, C.D. and Choi, G.J. (1991) High molecular weight polycarbosilane as a precursor to oxygen-free SiC fibers. Miscellaneous Symposium Conference Meeting, Vol. 15, pp. 584–85. (Paper read at Preceramic and Inorganic/ Organic Hybrid Materials Symposium, American Chemical Society Meeting, 25–30 August 1991, New York.)

    Google Scholar 

  • Valhas, C. (1994) Thermal degradation mechanisms of NICALON and Tyranno fibers. Ceram. Trans., 46, 41–52.

    Google Scholar 

  • Walker, Jr, B.E., Rice, R.W., Becher, P.F., Bender, B.A. and Coblenz, W.S. (1983) Preparation and properties of monolithic and composite ceramics produced by polymer pyrolysis. Am. Ceram. Soc. Bull., 62(8), 916–23.

    CAS  Google Scholar 

  • Wawner, Jr, F.E. (1988) Boron and silicon carbide/carbon fibers, in Fiber Reinforcements for Composite Materials (ed. A.R. Bunsell), Elsevier, New York, pp. 371–425.

    Google Scholar 

  • Wynne, K.J. and Rice, R.W. (1984) Ceramics via polymer pyrolysis. Ann. Rev. Mater. Sci., 14, 297–334.

    Article  CAS  Google Scholar 

  • Yajima, S. (1983) Special heat-resisting materials from organometallic polymers. Am. Ceram. Soc. Bull., 61(8), 893–915.

    Google Scholar 

  • Yajima, S., Hayashi, J. and Omori, M. (1975) Continuous silicon carbide fiber of high tensile strength. Chem. Lett., 9, 931–34.

    Article  Google Scholar 

  • Yajima, S., Okamura, K. and Hasegawa, Y. (1981) Method of producing silicon carbide fibers. US Patent 4,283,376.

    Google Scholar 

  • Yajima, S., Hasegawa, Y., Hayashi, J. and Iimura, M. (1978) Synthesis of continuous silicon carbide fiber with high tensile strength and high Young’s modulus. Part 1. Synthesis of polycarbosilane as precursor. J. Mater. Sci., 13(12), 2569–76.

    Article  CAS  Google Scholar 

  • Yajima, S., Iwai, T., Yamamura, T., Okamura, K. and Hasegawa, Y. (1981) Synthesis of a polytitanocarbosilane and its conversion into inorganic compounds. J. Mater. Sci., 16(5), 1349–55.

    Article  CAS  Google Scholar 

  • Yamamura, T., Ishikawa, T., Shibuya, M., Hisayuki, T. and Okamura, K. (1988) Development of a new continuous Si-Ti-C-O fiber using an organometallic polymer precursor. J. Mater. Sci., 23(7), 2589–94.

    Article  CAS  Google Scholar 

  • Yokoyama, Y., Nanba, T., Yasui, I., Kaya, H., Maeshima, T. and Isoda, T. (1991) X-ray diffraction study of the structure of silicon nitride fiber made from perhydropolysilazane. J. Am. Ceram. Soc., 74(4), 654–57.

    Article  CAS  Google Scholar 

  • Yun, H.M., Goldsby, J.C. and DiCarlo, J.C. (1994) Tensile creep and stress-rupture behavior of polymer derived SiC fibers. Ceram. Trans., 46, 17–28.

    CAS  Google Scholar 

  • Zangvil, A., Chang, Y.W., Finnegan, N. and Lipowitz, J. (1992) Effect of heat treatment on the elemental distribution of Si, C, N, O fibers. Ceram. Int., 18(4), 271–77.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Chapman & Hall

About this chapter

Cite this chapter

Lipowitz, J. (1997). Fiber Synthesis Processes. In: Weimer, A.W. (eds) Carbide, Nitride and Boride Materials Synthesis and Processing. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0071-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0071-4_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6521-4

  • Online ISBN: 978-94-009-0071-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics