Skip to main content
  • 1856 Accesses

Abstract

The synthesis of ceramic materials from gaseous precursors has received considerable attention in recent years, and many aspects of the chemistry have been elucidated. Some of the greatest advances have come in the development of technologies for the chemical vapor deposition of ceramic films, particularly those that find uses in microelectronics fabrication. An understanding of the chemistry begins with an examination of the gas composition and equilibrium condensed phases, and continues to the detailed treatment of the gas phase and surface reaction kinetics. The database on thermodynamics properties for the chemical species of concern in ceramic synthesis is far better developed than that for the reaction kinetics. Unfortunately, thermodynamics only describes the potential to form a material. The kinetics must be known to predict the chemistry quantitatively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adjaottor, A.A. and Griffin, G.L. (1992) Aerosol synthesis of aluminum nitride powder using metalorganic reactants. J. Am. Ceram. Sci., 75, 3209–14.

    Article  CAS  Google Scholar 

  • Allendorf, M.D. and Kee, R.J. (1991) A model of silicon carbide chemical vapor deposition. J. Electrochem. Soc., 138, 841–52.

    Article  CAS  Google Scholar 

  • Ando, Y. and Uyeda, R. (1981) Preparation of ultra-fine SiC particles by gas evaporation. Commun. Am. Ceram. Soc., 1, C-12–C-13.

    Article  Google Scholar 

  • Barin, I., Knack, O. and Kubaschewski, O. (1977) Thermodynamic Properties of Inorganic Substances, Springer-Verlag.

    Google Scholar 

  • Benton, M.D. and Kragh, F. (1991) Ultra-fine particles of TïN. Z. Phys. D Atoms Mol. Clust., 19, 299–307.

    Article  Google Scholar 

  • Bernard, C. and Madar, R. (1990) Benefits and limits of the thermodynamic approach to C.V.D. processes. Mat. Res. Soc. Symp. Proc., 168, 3–17.

    Article  CAS  Google Scholar 

  • Bird, R.B., Stewart, W.E. and Lightfoot, E.N. (1960) Transport Phenomena, Wiley, New York.

    Google Scholar 

  • Boyd, D.C., Haasch, R.T., Mantell, D.R., Schulze, R.K., Evans, J.F. and Gladfelter, W.L. (1989) Organometallic azides as precursors for aluminum nitride thin films. Chem. Mater., 1, 119–24.

    Article  CAS  Google Scholar 

  • Buiting, M.J. and Reader, A.H. (1990) Influence of impurities and microstractures on the resistivity of LPCVD titanium nitride films. Mat. Res. Soc. Symp. Proc., 168, 199–204.

    Article  CAS  Google Scholar 

  • Bunz, H.J. (1990) Coagulation Workshop — Nuclear Research Center, Karlsruhe, 16–18 March 1988 — Summary Report, Aerosol Sci., 21, 139–53.

    Article  Google Scholar 

  • Chang, Y.I. and Pfender, E. (1987) Thermochemistry of thermal plasma chemical reactions. Part II. A survey of synthesis routes for silicon nitride production. Plasma Chem. Plasma Process., 7, 299–316.

    Article  CAS  Google Scholar 

  • Chorley, R.W. and Lednor, P.W. (1991) Synthetic routes to high surface area non-oxide materials. Adv. Mater., 3, 474–85.

    Article  CAS  Google Scholar 

  • Erikson, G. (1975) Chem. Scripta, 8, 100.

    Google Scholar 

  • Fantoni, R., Borsella, E., Piccirillo, S., Ceccato, R. and Enzo, S. (1990) Laser synthesis and crystallographic characterization of ultrafine SiC powders. J. Mater. Res., 5, 143–50.

    Article  CAS  Google Scholar 

  • Fischman, G.S. and Petuskey, W.T. (1985) Thermodynamic analysis and kinetic implications of chemical vapor deposition of SiC from Si-C-Cl-H gas systems. J. Am. Ceram. Soc., 68, 185–90.

    Article  CAS  Google Scholar 

  • Fix, R.M., Gordon, R.G. and Hoffman, D.M. (1990) Titanium nitride thin films: properties and APCVD synthesis using organometallic precursors. Mat. Res. Soc. Symp. Proc., 168, 357–62.

    Article  CAS  Google Scholar 

  • Flagan, R.C. and Lunden, M.L. (1995) Particle structure control in nanoparticle synthesis from the vapor phase. Mater. Sci. Eng. A., 204, 113–24.

    Article  Google Scholar 

  • Flagan, R.C. and Seinfeld, J.H. (1988) Fundamentals of Air Pollution Engineering, Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Friedlander, S.K. (1977) Smoke, Dust and Haze, Wiley, New York.

    Google Scholar 

  • Fuchs, N.A. (1964) The Mechanics of Aerosols, Pergamon Press, New York.

    Google Scholar 

  • Gelbard, F. and Seinfeld, J.H. (1978) Numerical solution of the dynamic equation for particulate systems. J. Comput. Phys., 28, 357–75.

    Article  CAS  Google Scholar 

  • Gelbard, F. and Seinfeld, J.H. (1980) Simulation of multicomponent aerosol dynamics. J. Colloid Interface Sci., 78, 485–501.

    Article  CAS  Google Scholar 

  • Gelbard, F., Tambour, Y. and Seinfeld, J.H. (1980) Sectional representations for simulating aerosol dynamics. J. Colloid Interface Sci., 76, 541–56.

    Article  CAS  Google Scholar 

  • Gordon, R.G., Hoffman, D.M. and Riaz, U. (1991) Atmospheric pressure chemical vapor deposition of aluminum nitride thin films at 200–250°C. J. Mater. Res., 6, 5–7.

    Article  CAS  Google Scholar 

  • Hanson, R. and Salimian, S. (1984) Survey of rate constants in the N/H/O system, in Combustion Chemistry (ed. W.G. Gardiner, Jr), Springer-Verlag, New York, pp. 361–422.

    Google Scholar 

  • Hashman, T.W. and Pratsinis, S.E. (1992) Thermodynamics of vapor synthesis of AlN by nitridation of aluminum and its halides. J. Am. Ceram. Soc., 75, 920–28.

    Article  CAS  Google Scholar 

  • Hiram, Y. and Nir, A. (1983) A simulation of surface tension driven coalescence. J. Colloid Interface Sci., 95, 462–70.

    Article  CAS  Google Scholar 

  • Huseby, I.C. (1983) Synthesis and characterization of a high-purity AlN powder. J. Am. Ceram. Soc., 66, 217–20.

    Article  CAS  Google Scholar 

  • Interrante, L.V., Carpenter, II, L., Whitmarsh, C., Lee, W., Garbauskas, M. and Slack, G.A. (1986) Studies of organometallic precursors to aluminum nitride, in Mater. Res. Soc. Symp. Proc. Better Ceramics Through Chemistry II (eds C.J. Brinker, D.E. Clark and D.R. Ulrich), Material Research Society, Pittsburgh, PA, pp. 359–66.

    Google Scholar 

  • JANAF (1986) Thermochemical Tables, 3rd edn, J. Phys. Chem., Ref. Data 14 Suppl. 1.

    Google Scholar 

  • Kato, A., Hojo, J. and Watari, T. (1984) Some common aspects of the formation of nonoxide powders by the vapor reaction method, in Emergent Process Methods for High-Technology Ceramics (eds R.F. Davies, H. Palmour III and R.L. Porter), Plenum Press, New York, pp. 123–35.

    Google Scholar 

  • Keck, J.C. (1990) Rate-controlled constrained-equilibrium theory for chemical reactions in complex systems. Combust. Sci. Tech., 16, 125–54.

    CAS  Google Scholar 

  • Keck, J.C. and Gillespie, D. (1971) Rate-controlled partial equilibrium method for treating reacting gas mixtures. Combust. Flame, 17, 237–41.

    Article  CAS  Google Scholar 

  • Kee, R.J. and Miller, J.A. (1986) A structural approach to the computational modeling of chemical kinetics and transport in flowing systems, Springer-Verlag Ser. Chem. Phys., 47, 196–221.

    Google Scholar 

  • Kim, Y.P. and Seinfeld, J.H. (1992) Simulation of multicomponent aerosol dynamics. J. Colloid Interface Sci., 149, 425–49.

    Article  CAS  Google Scholar 

  • Kimura, I., Hottu, N., Nukui, H., Saito, N. and Yasukawa, S. (1988) Synthesis of fine AlN powder by vapour-phase reaction. J. Mater. Sci. Lett., 7, 66–68.

    Article  CAS  Google Scholar 

  • Kingon, A.I., Lutz, L.J. and Davis, R.F. (1983a) Thermodynamic calculations for the chemical vapor deposition of silicon nitride. J. Am. Ceram. Soc., 66, 551–57.

    Article  CAS  Google Scholar 

  • Kingon, A.I., Lutz, L.J. and Davis, R.F. (1983b) Thermodynamic calculations for the chemical vapor deposition of silicon carbide. J. Am. Ceram. Soc., 66, 558–66.

    Article  CAS  Google Scholar 

  • Kobata, A., Kusakabe, K. and Morooka, S. (1991) Growth and transformation of TiO2 crystallites in aerosol reactor. AIChE J., 37, 347–59.

    Article  CAS  Google Scholar 

  • Koch, W. and Friedlander, S.K. (1990) The effect of particle coalescence on the surface area of a coagulating aerosol. J. Colloid Interface Sci., 140, 419–27.

    Article  CAS  Google Scholar 

  • Koch, W. and Friedlander, S.K. (1991) Particle growth by coalescence and agglomeration. Part. Sci., 8, 86–89.

    CAS  Google Scholar 

  • Komiyama, H., Osawa, T., Kazi, H. and Konno, T. (1987) Rapid growth of AlN films by particle precipitation aided chemical vapor deposition, in High Tech Ceramics (ed. P. Vincenzini), Elsevier Science, Amsterdam, pp. 667–76.

    Google Scholar 

  • Kong, P.C. and Pfender, E. (1987) Formation of ultrafine β-silicon carbide powders in an argon thermal plasma jet. Langmuir, 3, 259–65.

    Article  CAS  Google Scholar 

  • Kosecki, S. and Ishitani, A. (1992) Theoretical study on silicon-nitride film growth: Ab initio molecular orbital calculations. J. Appl. Phys., 72, 5808–13.

    Article  Google Scholar 

  • Lai, F.S., Friedlander, S.K., Pich, J. and Hidy, G.M. (1972) The self-preserving particle size distribution for Brownian coagulation in the free-molecule regime. J. Colloid Interface Sci., 39, 395–405.

    Article  CAS  Google Scholar 

  • Landgreb, J.D. and Pratsinis, S.E. (1989) Gas-phase manufacture of particulates: interplay of chemical reactions and aerosol coagulation in the free molecular regime. Ind. Eng. Chem. Res., 28, 1474–81.

    Article  Google Scholar 

  • Larkin, D.J. and Interrante, L.V. (1992) Chemical vapor deposition of silicon carbide from 1,3-disilacyclobutane. Chem. Mater., 4, 22–24.

    Article  CAS  Google Scholar 

  • Li, Y.L., Liang, Y., Zheng, F. and Hu, Z.Q. (1994) Carbon dioxide laser synthesis of ultrafine silicon-carbide powders from diethoxydimethylsilane. J. Am. Ceram. Soc., 77, 1662–64.

    Article  CAS  Google Scholar 

  • Lunden, M.M. (1994) Sintering of aerosol agglomerates. Ph.D. Thesis in Mechanical Engineering, California Institute of Technology.

    Google Scholar 

  • Manasevit, H.M., Erdman, F.M. and Simpson, W.I. (1971) The use of metalorganics in the preparation of semiconductor materials. J. Electrochem. Soc., 118, 1864–68.

    Article  CAS  Google Scholar 

  • Matsoukas, T. and Friedlander, S.K. (1991) Dynamics of aerosol agglomerate formation. J. Colloid Interface Sci., 146, 495–506.

    Article  CAS  Google Scholar 

  • Meakin, P., Donn, B. and Mulholland, G.W. (1989) Collisions between point masses and fractal aggregates. Langmuir, 5, 510–18.

    Article  CAS  Google Scholar 

  • Morosanu, C.E. (1990) Thin Films by Chemical Vapour Deposition. Elsevier, New York.

    Google Scholar 

  • Mountain, R.D., Mulholland, G.W. and Baum, H. (1986) Simulation of aerosol agglomeration in the free molecular and continuum flow regimes. J. Colloid Interface Sci.114, 67–81.

    Article  CAS  Google Scholar 

  • Mulholland, G.W., Samson, R.J., Mountain, R.D. and Ernst, M.H. (1988) Cluster size distribution for free molecular agglomeration. Energy Fuels, 2, 481–86.

    Article  CAS  Google Scholar 

  • Nagel, S.R., MacChesney, J.B. and Walker, K.L. (1982) An overview of the modified chemical vapor deposition (MOCVD) process and performance. IEEE J. Quantum Elect.18, 459–76.

    Article  Google Scholar 

  • Nakanishi, N., Mori, S. and Kato, E. (1990) Kinetics of chemical vapor deposition of titanium nitride. J. Electrochem. Soc., 137, 322–28.

    Article  CAS  Google Scholar 

  • Nickel, K.G., Riedel, R. and Petzow, G. (1989) Thermodynamic and experimental study of high-purity aluminum nitride formation from aluminum chloride by chemical vapor deposition. J. Am. Ceram. Soc., 72, 1804–10.

    Article  CAS  Google Scholar 

  • Pauleau, Y. et al. (1980) Thermodynamics and kinetics of chemical vapor deposition of aluminum nitride films. J. Electrochem. Soc., 127, 1532–37.

    Article  CAS  Google Scholar 

  • Pratsinis, S.E. and Mastrangelo, S.V.R. (1989) Material synthesis aerosol reactors. Chem. Eng. Progr., May, 62–66.

    Google Scholar 

  • Pring, J.N. and Fielding, W. (1909) The preparation at high temperatures of some refractory metals from their chlorides. J. Chem. Soc., 95, 1497–506.

    CAS  Google Scholar 

  • Prochazka, S. and Greskovich, C. (1978) Synthesis and characterization of a pure silicon nitride powder. Ceram. Bull., 57, 579–86.

    CAS  Google Scholar 

  • Rao, N.P. and McMurry, P.H. (1989) Nucleation and growth of aerosol in chemically reacting systems — a theoretical study of the near collision controlled regime. Aerosol Sci. Technol.11, 120–32.

    Article  CAS  Google Scholar 

  • Reynolds, W.C. (1981) STANJAN — interactive computer programs for chemical equilibrium analysis. Department of Mechanical Engineering, Stanford University.

    Google Scholar 

  • Rogak, S.N., Baltensperger, U. and Flagan, R.C. (1991) Measurement of mass transfer to agglomerate aerosols. Aerosol Sci. Technol, 14, 447–58.

    Article  CAS  Google Scholar 

  • Rogak, S.N. and Flagan, R.C. (1992) Coagulation of aerosol agglomerates in the transition regime. J. Colloid Interface Sci., 151, 203–24.

    Article  CAS  Google Scholar 

  • Seigneur, C., Hudischewskyj, A.B., Seinfeld, J.H., Whitby, K.T. and Whitby, E.R. (1986) Simulation of aerosol dynamics — a comparative review of mathematical models. Aerosol Sci. Technol., 5, 205–22.

    Article  CAS  Google Scholar 

  • Seinfeld, J.H. (1986) Atmospheric Chemistry and Physics of Air Pollution, Wiley, New York.

    Google Scholar 

  • Seto, T., Shimada, M. and Okuyama, K. (1995) Evaluation of sintering of nanometer-sized titania using aerosol method. Aerosol Sci. Technol., 23, 183–200.

    Article  CAS  Google Scholar 

  • Sheppard, L.M. (1987) Vapor-phase synthesis of ceramics. Adv. Mater. Process., 4, 53–58.

    Google Scholar 

  • Sommerer, T.J. and Kushner, M.J. (1992) Numerical investigation of the kinetics and chemistry of rf glow discharge plasmas sustained in He, N2, O2, He/N2/O2, He/CF4/O2, and SiH4/NH3 using a Monte Carlo-fluid hybrid model. J. Appl. Phys., 71, 1654–73.

    Article  CAS  Google Scholar 

  • Spear, K.E. and Dirkx, R.R. (1990) Predicting the chemistry in CVD systems. Mater. Res. Soc. Symp. Proc., 168, 19–30.

    Article  CAS  Google Scholar 

  • Stinton, D.P., Besmann, T.M. and Lowden, R.A. (1988) Advanced ceramics by chemical vapor deposition techniques. Ceram. Bull., 67, 350–54.

    CAS  Google Scholar 

  • Tachibana, A., Yamaguchi, K., Kawauchi, S. and Kurosaki, Y. (1992) SiH3 radical mechanisms for Si-N bond formation. J. Am. Chem. Soc., 114, 7504–07.

    Article  CAS  Google Scholar 

  • Talbot, L., Cheng, R.K., Schefer, R.W. and Willis, D.R. (1980) Thermophoresis of particles in a heated boundary layer. J. Fluid Mech., 101, 737–58.

    Article  Google Scholar 

  • Ulrich, G.D. and Subramanian, N.S. (1977) Particle growth in flames III. Coalescence as a rate-controlling process. Combust. Sci. Technol., 17, 119–26.

    Article  CAS  Google Scholar 

  • Wachtman, J.B. and Haber, R.A. (1986) Ceramic films and coatings. Chem. Eng. Progr., January, 39–45.

    Google Scholar 

  • Weinberg, W.C. (1982) Thermophoretic efficiency in modified chemical vapor deposition process. J. Am. Ceram. Soc.65, 81–87.

    Article  Google Scholar 

  • White, W.B., Johnson, W.M. and Dantzig, G.B. (1958) Chemical equilibrium in complex mixtures. J. Chem. Phys., 28, 751–55.

    Article  CAS  Google Scholar 

  • Wu, J.J. and Flagan, R.C. (1988) A discrete-sectional solution to the aerosol dynamic equation. J. Colloid Interface Sci., 123, 339–52.

    Article  CAS  Google Scholar 

  • Wu, J.J., Nguyen, H.V. and Flagan, R.C. (1988) Evaluation and control of particle properties in aerosol reactors. AIChE J., 34, 1249–56.

    Article  CAS  Google Scholar 

  • Xiong, Y. and Pratsinis, S.E. (1993) Formation of agglomerate particles by coagulation and sintering. 1. A 2-dimensional solution of the population balance equation. J. Aerosol Sci., 24, 283–300.

    Article  CAS  Google Scholar 

  • Xiong, Y., Akhtar, M.K. and Pratsinis, S.E. (1993) Formation of agglomerate particles by coagulation and sintering. 2. The evolution of the morphology of aerosol-made titania, silica, and silica-doped titania powders. J. Aerosol Sci., 24, 301–13.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Chapman & Hall

About this chapter

Cite this chapter

Flagan, R.C. (1997). Thermochemistry and Kinetics. In: Weimer, A.W. (eds) Carbide, Nitride and Boride Materials Synthesis and Processing. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0071-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0071-4_11

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6521-4

  • Online ISBN: 978-94-009-0071-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics