Skip to main content

Potential Transport of Windblown Sand: Influence of Surface Roughness and Assessment with Radar Data

  • Chapter
Desert Aeolian Processes

Abstract

The transport of windblown sand is controlled by many factors, including wind regime and sediment supply. Surface roughness at the sub-meter scale is also important because it influences both the threshold conditions for particle entrainment and the flux of sand once it is set into motion. In general, increases in surface roughness result in higher threshold speeds for particle movement and decreases in sand fluxes. Aerodynamic roughness (z 0) is the aeolian parameter related to surface roughness and is defined as the height above some mean level at which average wind speed is zero. Values of z 0 are derived from wind measurements through the boundary layer, but few z 0 values have been obtained over natural surfaces because of the expense and limitations of making such measurements. Rather, remote sensing using radar systems has the potential for addressing this problem. In this investigation, we derived z 0 values for a wide variety of surfaces in the southwestern United States and obtained radar data for these sites in P-band (wavelength = 68 cm), L-band (wavelength = 24 cm) and C-band (wavelength = 5.6 cm). We show that there are good correlations among z 0, the RMS height of the surface, and the radar backscatter coefficient, σ0, with the best correlation for L-band HV polarized radar data. This study shows the potential for mapping large regions with radar in order to derive aerodynamic roughness values, which in turn can be used in predictive models of sand transport.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arvidson, R. E., and Evans, D. L. (1990) Geologic remote sensing field experiment (abstract). Lunar and Planetary Science XXI, p. 26–27.

    Google Scholar 

  • Arvidson, R. E., M. K. Shepard, E. A. Guiness, S. B. Petroy, J. J. Plaut, D. L. Evans, T. G. Farr, R. Greeley, N. Lancaster, L. R. Gaddis. (1993) Characterization of lava-flow degradation in the Pisgah and Cima volcanic fields, California, using Landsat Thematic Mapper and AIRSAR data. Geological Society of America Bulletin, v. 105, p. 175–188.

    Article  Google Scholar 

  • Bagnold, R. A. (1941) The Physics of Blown Sand and Desert Dunes. Methuen, London.

    Google Scholar 

  • Blumberg, D. G., and Greeley, R. (1993) Field studies of aerodynamic roughness. Journal of Arid Environments, v. 25, p. 39–48.

    Article  Google Scholar 

  • Chepil, W. S., and Woodruff, N. P. (1963) The physics of wind erosion and its control. Advanced Agronomy, v. 15, p. 211–302.

    Article  Google Scholar 

  • Csanady, G. T. (1972) Geostrophic drag, heat and mass transfer coefficients for the diabatic Ekman layer. Journal of Atmospheric Science, v. 29, p. 488–496.

    Article  Google Scholar 

  • Evans, D. L., Farr, T. G., Ford, J. P., Thompson, T. W., and Werner, C. L. (1986) Multipolarization radar images for geologic mapping and vegetation discrimination. IEEE Transactions of Geoscience Remote Sensing, v. 24, p. 774–789.

    Google Scholar 

  • Gaddis, L. R. (1992) Lava-flow characterization at Pisgah volcanic field, California, with multiparameter imaging radar. Geological Society of America Bulletin, v. 104, p. 695–703.

    Article  Google Scholar 

  • Gaddis, L. R., Mouginis-Mark, P. J., and Hayashi, J. N. (1990) Lava flow surface textures: SIR-B radar image texture, field observations, and terrain measurements. Photogrammetric Engineering and Remote Sensing, v. 56, p. 211–224.

    Google Scholar 

  • Gillette, D. A., and Stockton, P. H. (1989) The effect of non-erodible particles on wind erosion of erodible surfaces. Journal of Geophysical Research, v. 94, p. 885–893.

    Google Scholar 

  • Golder, D. G. (1972) Relations among stability parameters in the surface layer. Boundary-Layer Meteorology, v. 3, p. 47–58.

    Article  Google Scholar 

  • Greeley, R., and Iversen, J. D. (1987) Measurements of wind friction speeds over lava surfaces and assessment of sediment transport. Geophysical Research Letters, v. 14, p. 925–928.

    Article  Google Scholar 

  • Greeley, R., Lancaster, N., Sullivan, R. J., Saunders, R. S., Theilig, E., Wall, S., Dobrovolskis, A., White, B. R., and Iversen, J. D. (1988) A relationship between radar backscatter and aerodynamic roughness: Preliminary results. Geophysical Research Letters, v. 15, p. 565–568.

    Article  Google Scholar 

  • Greeley, R., Gaddis, L., Lancaster, N., Dobrovolskis, A., Iversen, J., Rasmussen, K., Saunders, S., van Zyl, J., Wall, S., Zebker, H., and White, B. (1991) Assessment of aerodynamic roughness via airborne radar observations. Acta Mechanica, Suppl. 2, p. 77–88.

    Google Scholar 

  • Iversen, J. D., Pollack, J. B., Greeley, R., and White, B. R. (1976) Saltation threshold on Mars: the effect of interparticle force, surface roughness, and low atmospheric density. Icarus, v. 29, p. 381–393.

    Article  Google Scholar 

  • Iversen, J. D., Wang, W. P., Rasmussen, K. R., Mikkelsen, H. E., Hasiuk, J. F., and Leach, R. N. (1990) The effect of a roughness element on local saltation transport. Journal of Wind Engineering and Industrial Aerodynamics, v. 36, p. 509–516.

    Article  Google Scholar 

  • Iversen, J. D., Wang, W. P., Rasmussen, K. R., Mikkelsen, H. E., and Leach, R. N. (1991) _ Roughness element effect on local and universal saltation transport. Acta Mechanica, Suppl. 2, p. 65–75.

    Google Scholar 

  • Lancaster, N., Greeley, R., and K. R. Rasmussen, K. R. (1991) Interaction between unvegetated desert surfaces andthe atmospheric boundary layer: a preliminary assessment.ActaMechanica, Suppl. 2, p. 89–102.

    Article  Google Scholar 

  • Lyles, L., and Allison, B. E. (1975) Wind erosion: Uniformly spacing non-erodible elements eliminates effects of wind direction variability. Journal of Soil and Water Conservation, v. 30, p. 225–226.

    Google Scholar 

  • Marshall, J. K. (1971) Drag measurements in roughness arrays of varying density and distribution. Agricultural Meteorology, v. 8, p. 269–292.

    Article  Google Scholar 

  • Monin, A. S., and Yaglom, A. M. (1971) Statistical Fluid Mechanics, Vol. 1: Mechanics of Turbulence. The M. I. T. Press, Cambridge, Massachusetts.

    Google Scholar 

  • Peterson, E. W., Busch, N.E., Jensen, N. O., Hojstrup, J., Kristensen, L., and Petersen, E. W. (1978) The effect of local terrain irregularities on the mean wind and turbulence characteristics near the ground. In Symposium on Boundary-Layer Physics Applied to Air Pollution, Norrkoping, WMO-No. 510, p. 45–50.

    Google Scholar 

  • Raupach, M. R., Antonia, R. A., and Rajagopalan, S. (1991) Rough-wall turbulent boundary-layers. Applied Mechanic Reviews, v. 44, p. 1–25.

    Article  Google Scholar 

  • Schaber, G. G., Berlin, G. L., and Pike, R. J. (1980) Terrain analysis procedures for modeling radar backscatter. Radar Geology: An Assessment, Jet Propulsion Laboratory Report 80–61, p. 168–181.

    Google Scholar 

  • Stull, R. L. (1988) An Introduction to Boundary Layer Meteorology. Kluwer, Boston, p. 347–404.

    Google Scholar 

  • Ulaby, F. T., Moore, R. K., and Fung, A. K. (1982)Microwave Remote Sensing Active and Passive: Radar Remote Sensing and Surface Scattering and Emission Theory,v. 2. Addison-Wesley, Reading, Massachusetts.

    Google Scholar 

  • van Zyl, J. J. (1990) Calibration of polarimetric radar images using only image parameters and trihedral corner reflector responses. Journal of Geophysical Research, v. 28, p. 337–348.

    Google Scholar 

  • van Zyl, J. J., Zebker, H. A., and Elachi, C. (1987) Imaging radar polarization signatures: Theory and observation. Radio Science, v. 22, p. 529–543.

    Article  Google Scholar 

  • van Zyl, J. J., Dubois, P., Zebker, H. A., and Farr, T. G. (1988) Inference of geologic surface parameters from polarimetric radar observations and model inversion. Proceedings of the IGARSS ’88 Symposium, European Space Agency SP-284, p. 51–52.

    Google Scholar 

  • Wall, S.D., van Zyl, J. J., Arvidson, R. E., Theilig, E., and Saunders, R. S. (1988) The Mojave field experiment: Precursor to the planetary test site (abstract). Bulletin of the American Astronomical Society, v. 20, p. 809.

    Google Scholar 

  • Wall, S. D., Farr, T. G., Muller, J. P., Lewis, P., and Leberl, F. W. (1991) Measurement of surface microtopography. Photogrammetric Engineering and Remote Sensing, v. 57, p. 1075–1078.

    Google Scholar 

  • Wang, J. R., Engman, E. T., Shiue, J. C., Rusek, M., and Steinmeier, C. (1986) The SIR-B observations of microwave backscatter dependence on soil moisture, surface roughness, and vegetation covers. IEEE Transactions ofGeoscience and Remote Sensing, GE-24, p. 510–516.

    Google Scholar 

  • White, B. R. (1979) Soil transport by winds on Mars. Journal of Geophysical Research, v. 84, p. 4643–4651.

    Article  Google Scholar 

  • Wieringa, J. (1993) Representative roughness parameters for homogeneous terrain. Boundary Layer Meteorology, v. 63, p. 323–363.

    Article  Google Scholar 

  • Wise, W. S. (1966) Geologic map of the Pisgah and Sunshine Cone lava fields. NASA Technical Letter 11.

    Google Scholar 

  • Zebker, H. A., and Lou, Y. (1990) Phase calibration of imaging radar Stokes matrices. IEEE Transactions of Geoscience and Remote Sensing, v. 28, p. 246–252.

    Article  Google Scholar 

  • Zebker, H. A., van Zyl, J. J., and Held, D. N. (1987) Imaging radar polarimetry from wave synthesis. Journal of Geophysical Research, v. 92, p. 683–701.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Vatche P. Tachakerian

About this chapter

Cite this chapter

Greeley, R. et al. (1995). Potential Transport of Windblown Sand: Influence of Surface Roughness and Assessment with Radar Data. In: Tchakerian, V.P. (eds) Desert Aeolian Processes. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0067-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0067-7_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6519-1

  • Online ISBN: 978-94-009-0067-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics