Skip to main content

Part of the book series: Developments in Plant and Soil Sciences ((DPSS,volume 78))

Abstract

To gain a full understanding of the complex processes that underlie plant nutrition requires the elucidation of the genetic, molecular, biochemical, biophysical, physiological and environmental factors that interact, at the cellular, organ and whole plant levels, to allow this sessile organism to optimize the allocation and utilization of available resources. The application of microinjection methods, in conjunction with molecular tools, established a powerful experimental approach to elucidate the processes underlying plant growth and development. Besides providing insight into the molecular nature of many of the membrane transport systems that function in nutrient acquisition and transport, this approach revealed the presence of a unique plasmodesmal macromolecular trafficking system that operates at the cellular/tissue and whole-plant level. This information processing network it discussed in terms of its role in allowing plants to regulate physiological activities at a supracellular level. Future studies aimed at identifying additional genes associated with this plasmodesmal macromolecular trafficking system will advance our understanding of the function and evolution of this novel plant communication system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

FITC:

dextran - fluorescein isothyocyanate conjugated dextran

SEL:

size exclusion limit

References

  • Anderson J A, Huprikar S S, Kohian L V, Lucas W J and Gaber R F 1992 Functional expression of a probably Arabidopsis thaliana potassium channel in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 89, 3736–3740.

    Article  PubMed  CAS  Google Scholar 

  • Balachandran S, Hull R J, Vaadia Y, Wolf S and Lucas W J 1995 Tobacco mosaic virus movement protein-induced change in carbon partitioning originates from the mesophyll and is independent of change in plasmodesnial size exclusion limit. Plant Cell Environ. 18, 1301–1310.

    Article  CAS  Google Scholar 

  • Balachandran S, Hull R J, Martins R A, Vaadia Y and Lucas W J 1997a Influence of environmental stress on biomass partitioning in transgenic tobacco plants expressing the movement protein of tobacco mosaic virus. Plant Physiol. 114, 475–481.

    PubMed  CAS  Google Scholar 

  • Balachandran S, Xiang Y, Schobert C, Thompson G A and Lucas W J 1997b Phloem sap proteins of Cucurbita maxima and Ricinus communis have the capacity to traffic cell to cell through plasmodesmata. Proc. Natl. Acad. Sci. USA (submitted)

    Google Scholar 

  • Behrens H M, Gradmann D and Sievers A 1985 Membranepotential responses following gravistimulation in roots of Lepidium sativum L. Planta 163, 463–472.

    Article  Google Scholar 

  • Borstlap A C 1981 Invalidity of the multiphasic concept of ion absorption in plants. Plant Cell Environ. 4, 189–195.

    CAS  Google Scholar 

  • Bostwick D E, Dannenhoffer J M, Skaggs M I, Lister R M, Larkins B A and Thompson GA 1992 Pumpkin phloem lectin genes are specifically expressed in companion cells. Plant Cell 4, 1539–1548

    Article  PubMed  CAS  Google Scholar 

  • Bush D R 1993 Proton-coupled sugar and amino acid transporters in plants. Annu. Rev. Plant Physiol. Plant Molec. Biol. 44, 513–542.

    Article  CAS  Google Scholar 

  • Chilcott T C, Frost-Shartzer S, Lverson M W, Garvin D F, Kochian L V and Lucas W J 1995 Potassium transport kinetics of KAT1 expressed in Xenopous oocytes: A proposed molecular structure and field effect mechanism for membrane transport. C.R. Acad. Sci. Paris 318, 761–771.

    CAS  Google Scholar 

  • Cleland R E, Fujiwara T and Lucas W J 1994 Plasmodesmal-mediated cell-to-cell transport in wheat roots is modulated by anaerobic stress. Protoplasma 178, 81–85.

    Article  PubMed  CAS  Google Scholar 

  • Deom C M, Oliver M J, and Beachy R N 1987 The 30-kilodalton gene product of tobacco mosaic virus potentiates virus movement. Science 237, 384–389.

    Article  Google Scholar 

  • Deom C M, Schubert K, Wolf S, Holt C, Lucas W J and Beachy R N 1990 Molecular characterization and biological function of the movement protein of tobacco mosaic virus in transgenic plants. Proc. Natl. Acad. Sci. USA 87, 3284–3288.

    Article  PubMed  CAS  Google Scholar 

  • Ding B, Haudenshield J S, Hull R J, Wolf S, Beachy R N and Lucas W J 1992 Secondary plasmodesmata are specific sites of localization of the tobacco mosaic virus movement protein in transgenic tobacco plants. Plant Cell 4, 915–928.

    Article  PubMed  CAS  Google Scholar 

  • Ding B, Haudenshield J S, Willmitzer L and Lucas W J 1993 Development of secondary plasmodesmata is arrested in tobacco expressing a yeast derived invertase gene. Plant J. 4, 179–189.

    Article  PubMed  CAS  Google Scholar 

  • Ding B, Qiubo L, Nguyen L, Palukaitis P and Lucas W J 1995 Cucumber mosaic virus 3a protein potentiates cell-to-cell trafficking of CMV RNA in tobacco plants. Virology 207, 345–353.

    Article  PubMed  CAS  Google Scholar 

  • Erwee M G and Goodwin P B 1983 Characterisation of the Egeria densa Planch. leaf symplast: inhibition of the intercellular movement of fluorescent probes by group II ions. Planta 158, 320–328.

    Article  CAS  Google Scholar 

  • Erwee M G and Goodwin P B 1984 Characterization of the Egeria densa leaf symplast: response to plasmolysis, deplasmolysis and to aromatic amino acids. Protoplasma 122, 162–168.

    Article  CAS  Google Scholar 

  • Erwee M G and Goodwin P B 1985 Symplast domains in extrastellar tissues of Egeria densa Planch. Planta 163, 9–19.

    Article  CAS  Google Scholar 

  • Erwee M G, Goodwin P B and Van Bel A J E 1985 Cell-cell communication in the leaves of Commelina cyanea and other plants. Plant Cell Environ. 8, 173–178.

    Google Scholar 

  • Fisher D B, Wu Y and Ku M S B 1992 Turnover of soluble proteins in the wheat sieve tube. Plant Physiol. 100, 1433–1441.

    Article  PubMed  CAS  Google Scholar 

  • Frommer W B Hunnel S and Riesmeier J W 1993 Expression cloning in yeast of a cDNA encoding a broad specificity amino acid permease from Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 90, 5944–5948.

    Article  PubMed  CAS  Google Scholar 

  • Fujiwara T, Giesman-Cookmeyer D, Ding B, Lommel S A and Lucas W J 1993 Cell-to-cell trafficking of macromolecules through plasmodesmata potentiated by the red clover necrotic mosaic virus movement protein. Plant Cell 5, 1783–1794.

    Article  PubMed  CAS  Google Scholar 

  • Goodwin P B 1983 Molecular size limit for movement in the symplast of the Elodea leaf. Planta 157, 124–130.

    Article  CAS  Google Scholar 

  • Goodwin P B and Lyndon R F 1983 Synchronisation of cell division during transition to flowering in Silene apices not due to increased symplast permeability. Protoplasma 116, 219–222.

    Article  Google Scholar 

  • Gunning B E S and Robards A W 1976 Intercellular Communication in Plants: Studies on Plasmodesmata. Springer-Verlag, Berlin, Germany. 387p.

    Google Scholar 

  • Hake S and Freeling M 1986 Analysis of genetic mosaics shows that the extra epidermal cell divisions in Knotted1 mutant maize plants are induced by adjacent cells. Nature 320, 621–623.

    Article  Google Scholar 

  • Hedrich R and Schroeder J I 1989 The physiology of ion channels and electrogenic pumps in higher plants. Annu. Rev. Plant Physiol. 40, 539–569.

    Article  Google Scholar 

  • Hedrich R Schroeder J I and Fernandez J M 1986 Patch-clamp studies on higher plant cells: a perspective. Trends Biochem. Sci. 12, 49–52.

    Article  Google Scholar 

  • Ishiwatari, Y, Honda C, Kawashima I, Nakamura S, Hirano H, Mori S, Fujiwara T, Hayashi H and Chino M 1995 Thioredoxin h is one of the major proteins in rice phloem sap. Planta 195, 456–463.

    Article  PubMed  CAS  Google Scholar 

  • Ishiwatari Y, Fujiwara T, McFarland K C, Nemoto K, Hayashi H, Chino M and Lucas W J 1997 Rice phloem thioredoxin h has the capacity to mediate its own cell-to-cell transport through plasmodesmata. Planta (In Press).

    Google Scholar 

  • Jackson D, Veit B and Hake S 1994 Expression of maize Knotted1 related homeobox genes in the shoot peristem predicts patterns of morphogenesis in the vegatative shoot. Development 120, 405–423.

    CAS  Google Scholar 

  • Karrer E E, Lincoln J E, Hogenhout S, Bennett A B, Bostock R M, Martineau B, Lucas W J, Gilchrist D G and Alexander D 1995 In situ isolation of mRNA from individual cells: creation of cell-specific cDNA libraries. Proc. Natl. Acad. Sci. USA 92, 3814–3818.

    Article  PubMed  CAS  Google Scholar 

  • Kawabe S, Fukumorita T and Chino M 1980 Collection of rice phloem sap from stylets of homopterous insects severed by YAG laser. Plant Cell Physiol. 21, 1319–1327.

    CAS  Google Scholar 

  • Kochian L V and Lucas W J 1982a Potassium transport in corn rrots. I. Resolution of kinetics into a saturable and a linear component. Plant Physiol. 70, 1723–1731.

    Article  PubMed  CAS  Google Scholar 

  • Kochian L V and Lucas W J 1982b A re-evaluation of the carrier-kinetic approach to ion transport in roots of higher plants. What’s New In Plant Physiol. 13, 45–48.

    Google Scholar 

  • Kochian L V and Lucas W J 1983 Potassium transport in corn roots. II. The significance of the root periphery. Plant Physiol. 73, 208–215.

    Article  PubMed  CAS  Google Scholar 

  • Kochian L V and Lucas W J 1988 Potassium transport in roots. Adv. Bot. Res. 15, 93–178.

    Article  CAS  Google Scholar 

  • Kochian L V, Xin-Zhi J and Lucas W J 1985 Potassium transport in corn roots. IV. Characterization of the linear component. Plant Physiol. 79, 771–776.

    Article  PubMed  CAS  Google Scholar 

  • Kühn C, Franceschi V R, Schulz A, Lemoine R and Frommer W B 1997 Macromolecular trafficking indicated by localization and turnover of sucrose transporters in enucleate sieve elements. Science 275, 1298–1300.

    Article  PubMed  Google Scholar 

  • Lucas W J 1995 Plasmodesmata: intercellular channels for macromolecular transport in plants. Current Opinion Cell Biol. 7, 673–680.

    Article  PubMed  CAS  Google Scholar 

  • Lucas W J, Ding B and van der Schoot C 1993a Plasmodesmata and the supracellular nature of plants. New Phytol. 125, 435–476.

    Article  Google Scholar 

  • Lucas W J, Olesinski A, Hull R J, Haudenshield J, Deom C M, Beachy R N and Wolf S 1993b Influence of the tobacco mosaic virus 30-kDa movement protein on carbon metabolism and photosynthate partitioning in transgenic tobacco plants. Planta 190, 88–96.

    Article  CAS  Google Scholar 

  • Lucas W J and Wolf S 1993 Plasmodesmata: the intercellular organelle of green plants. Trends in Cell Biol. 3, 308–315.

    Article  CAS  Google Scholar 

  • Lucas W J and Gilbertson R L 1994 Plasmodesmata in relation to viral movement within leaf tissues. Annu. Rev. Phytopathol. 32, 387–411.

    Article  CAS  Google Scholar 

  • Lucas W J, Bouche-Pillon S, Jackson D P, Nguyen L, Baker L, Ding B, and Hake S 1995 Selective trafficking of KNOTTED1 and its mRNA through plant plasmodesmata. Science 270, 1980–1983.

    Article  PubMed  CAS  Google Scholar 

  • Lucas W J, Balachandran S, Park J and Wolf S 1996 Piasmodesmal companion cell-mesophyll communication in the control over carbon metabolism and phloem transport: insights gained from viral movement proteins. J. Exp. Bot. 47, 1119–1128.

    Article  PubMed  CAS  Google Scholar 

  • Mezitt L A, and Lucas W J 1996 Plasmodesmal cell-to-cell transport of proteins and nucleic acids. Plant Mol. Biol. 32, 251–273.

    Article  PubMed  CAS  Google Scholar 

  • Münch E 1930 Die Stoffbewegung in der Pflanze. Gustav Fischer, Jena. Nissen P 1974 Uptake mechanisms: inorganic and organic. Annu. Rev. Plant Physiol. 25, 53–79.

    Google Scholar 

  • Nakamura S, Hayashi H, Mori S and Chino M 1993 Protein phosphorylation in the sieve tubes of rice plants. Plant Cell Physiol. 34, 927–933.

    CAS  Google Scholar 

  • Nakamura S, Hayashi H, Mori S and Chino M 1996 Detection and characterization of protein kinases in rice phloem sap. Plant Cell Physiol. 36, 17–27.

    Google Scholar 

  • Noueiry A O, Lucas W J and Gilbertson R L 1994 Two Proteins of a plant DNA virus coordinate nuclear and plasmodesmal transport. Cell 76, 925–932.

    Article  PubMed  CAS  Google Scholar 

  • Olesinski A A, Lucas W J, Galun E and Wolf S 1995 Pleiotropic effects of TMV-MP on carbon metabolism and export in transgenic tobacco plants. Planta 197, 118–126.

    Article  CAS  Google Scholar 

  • Olesinski A A, Almon E, Navot N, Galun E, Lucas W J and Wolf S 1996 Tissue specific expression of tobacco mosaic virus movement protein in transgenic potato plants alters plasmodesmal function and carbohydrate partitioning. Plant Physiol. 111, 541–550.

    PubMed  CAS  Google Scholar 

  • Overall R L, and Gunning B E S 1982 Intercellular communication in Azolla roots: II. Electrical coupling. Protoplasma 111, 151–160.

    Article  Google Scholar 

  • Robards A W and Lucas W J 1990 Plasmodesmata. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41, 369–419.

    Article  Google Scholar 

  • Sakuth T, Schobert C, Pecsvaradi A, Eichholz A, Komor E and Orlich G 1993 Specific proteins in the sieve-tube exudates of Ricinus communis L. seedlings: separation, characterization and in-vivo labeling. Planta 191, 207–213.

    Article  CAS  Google Scholar 

  • Schachtman D P, Schroeder J I, Lucas W J, Anderson J A and Gaber RF 1992 Expression of an inward-rectifying potassium channel by the Arbidopsis RAT1 cDNA. Science 258, 1654–1658.

    Article  PubMed  CAS  Google Scholar 

  • Schobert C, Großmann P, Gottschalk M, Komor E, Pecsvaradi A and Nieden U Z 1995 Sieve-tube exudate from Ricinus communis L. seedlings contains ubiquitin and chaperones. Planta 196, 205–210.

    Article  CAS  Google Scholar 

  • Sentenac H, Bonneaud N, Minet M, Lacroute F, Salmon J-M, Gaymard F and Grignon C. 1992 Cloning and expression in yeast of a plant potassium transport system. Science 256, 663–665.

    Article  PubMed  CAS  Google Scholar 

  • Sommer H, Beltran JP, Huijser P, Pape H, Lonnig W E, Saedler H and Schwartz-Sommer Z 1990 Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors. EMBO J. 9, 605–613.

    PubMed  CAS  Google Scholar 

  • Spanswick R M 1972 Electrical coupling between cells of higher plants: a direct demonstration of intercellular communication. Planta 102, 215–227.

    Article  CAS  Google Scholar 

  • Spanswick R M and Costerton J W F 1967 Plasmodesmata in Nitella translucens: structure and electrical resistance. J. Cell Sci. 2, 451–464.

    PubMed  CAS  Google Scholar 

  • Sussman M R 1994 Molecular analysis of proteins in the plasma membrane. Annu. Rev. Plant Physiol. Plant Molec. Biol. 45, 211–234.

    Article  CAS  Google Scholar 

  • Sze H 1985 H+-Translocating ATPases: advances using membrane vesicles. Annu. Rev. Plant Physiol. 36, 175–208.

    Article  CAS  Google Scholar 

  • Tanner W and Caspari T 1996 Membrane transport carriers. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 595–626.

    Article  PubMed  CAS  Google Scholar 

  • Tester M 1990 Plant ion channels: whole-cell and single-channel studies. New Phytol. 114, 305–340.

    Article  Google Scholar 

  • Trobner W, Ramirez L, Motte P, Hue I, Huijser P, Lonnig W E, Saedler H, Sommer H and Schwartz-Sommer Z 1992 GLOBOSA: a homeotic gene which interacts with DEFICIENS in the control of Antirrhinum floral organogenesis. EMBO J. 11, 4693–4704.

    PubMed  CAS  Google Scholar 

  • Vorob’ev L N, Tarkhanov K A and Vakhmistrov D B 1982 Use of the electrical coupling factor for quantitative estimation of symplasmic communications. Soviet Plant Physiol. 28, 495–502.

    Google Scholar 

  • Waigmann E, Lucas W J, Citovsky V and Zambryski P 1994 Direct functional assay for tobacco mosaic virus cell-to-cell movement protein and identification of a domain involved in increasing plasmodesmal permeability. Proc. Natl Acad. Sci. USA 91, 1433–1437.

    Article  PubMed  CAS  Google Scholar 

  • Wolf S, Deom C M, Beachy R N and Lucas W J 1989 Movement protein of tobacco mosaic virus modifies plasmodesmatal size exclusion limit. Science 246, 377–379.

    Article  PubMed  CAS  Google Scholar 

  • Wolf S, Deom C M, Beachy R and Lucas W J 1991 Plasmodesmatal function is probed using transgenic tobacco plants that express a virus movement protein. Plant Cell 3, 593–604.

    Article  PubMed  CAS  Google Scholar 

  • Wolf S and Lucas W J 1997 Plasmodesmal-mediated plant communication network: Implications for controlling carbon metabolism and resource allocation. In A Molecular Approach to Primary Metabolism in Higher Plants. Eds. C Foyer and P Quick, pp 219–236. Taylor & Francis, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Kluwer Academic Publishers

About this chapter

Cite this chapter

Lucas, W.J. (1997). Application of microinjection techniques to plant nutrition. In: Ando, T., Fujita, K., Mae, T., Matsumoto, H., Mori, S., Sekiya, J. (eds) Plant Nutrition for Sustainable Food Production and Environment. Developments in Plant and Soil Sciences, vol 78. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0047-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0047-9_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6510-8

  • Online ISBN: 978-94-009-0047-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics