Skip to main content

Fine and Hyperfine Structure

Spin Properties of Molecules

  • Chapter
Problem Solving in Computational Molecular Science

Part of the book series: NATO ASI Series ((ASIC,volume 500))

Abstract

For chemical purposes the electronic structure of molecules composed of light elements is well described by the Schrödinger equation employing a non-relativistic, spin-independent Hamiltonian. Spin degrees of freedom enter the scene only because electrons ― being fermions ― obey the Pauli principle, i.e., the total electronic wavefunction has to be antisymmetric with respect to the interchange of two electronic coordinates. At this level of approximation no mixing of spin and spatial symmetries occurs. Eigenfunctions of the electronic Schrodinger equation can simultaneously be made eigenfunctions of the total spin \({\vec S^2}\) with eigenvalues s(s + 1). Their spatial parts show characteristic transformation properties under symmetry operations, e.g. rotations and reflections of the nuclear frame. Therefore, we use to classify electronic states according to their spin multiplicity 2s + 1 and according to some irreducible representation of the molecular point group.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S R Langhoff and C W Kern. Modern Theoretical Chemistry, page 381. H F Schaefer III, Plenum Press, 1977.

    Google Scholar 

  2. W G Richards, H P Trivedi, and D L Cooper. Spin-orbit coupling in molecules. Clarendon Press, 1981.

    Google Scholar 

  3. D R Yarkony. Int. Rev. Phys. Chem., 11:195, 1992.

    Article  CAS  Google Scholar 

  4. B A Hefß, C M Marian, and S D Peyerimhoff. Advanced Series in Physical Chemistry—Vol.2, Modern Structure Theory Part I, pages 152-278. C-Y Ng and D R Yarkony, World Scientific, 1995.

    Google Scholar 

  5. R Samzow. Die Zweielektronenterme des no-pair-Hamiltonoperators. PhD thesis, University of Bonn, 1991.

    Google Scholar 

  6. C H Teichteil, M Pelissier, and F Spiegelmann. Chem. Phys., 81:273, 1983.

    Article  CAS  Google Scholar 

  7. W C Ermler, Y S Lee, P A Christiansen, and K S Pitzer. Chem. Phys. Lett., 81:70, 1981.

    Article  CAS  Google Scholar 

  8. R M Pitzer and N W Winter. J. Chem. Phys., 92:3061, 1988.

    Article  CAS  Google Scholar 

  9. D Andrae, U Häußermann, M Dolg, H Stoll, and H Preuß. Theor. Chim. Acta, 77:123, 1990.

    Article  CAS  Google Scholar 

  10. M Casarrubios and L Seijo. Chem. Phys. Lett., 236:510, 1995.

    Article  CAS  Google Scholar 

  11. C M Marian and U Wahlgren. Chem. Phys. Lett., 251:357, 1996.

    Article  CAS  Google Scholar 

  12. W C Ermler, R B Ross, and P A Christiansen. Adv. Quantum Chem., 19:139, 1988.

    Article  CAS  Google Scholar 

  13. M Weissbluth. Atoms and Molecules. Academic Press, 1978.

    Google Scholar 

  14. B L Silver. Irreducible Tensor Methods. Academic Press, 1976.

    Google Scholar 

  15. E U Condon and G H Shortley. The Theory of Atomic Spectra. Cambridge University Press, 1967.

    Google Scholar 

  16. W Weltner Jr. Magnetic Atoms and Molecules. Van Nostrand Reinhold, 1983.

    Google Scholar 

  17. E P Wigner. Gruppentheorie. Vieweg, 1930.

    Google Scholar 

  18. C Eckart. Rev. Mod. Phys., 2:305, 1930.

    Article  CAS  Google Scholar 

  19. M Rotenberg, R Bivins, N Metropolis, and Jr. K Wooten. The 3j and 6j Symbols. MIT Press, 1959.

    Google Scholar 

  20. B A Heß, C M Marian, U Wahlgren, and O Gropen. Chem. Phys. Lett., 251:365, 1996.

    Article  Google Scholar 

  21. M Perić, B Engels, and S D Peyerimhoff. Quantum Mechanical Electronic Structure Calculations with Chemical Accuracy, pages 261-356. S R Langhoff, Kluwer, 1995.

    Google Scholar 

  22. M Mizushima. The Theory of Rotating Diatomic Molecules. John Wiley & Sons, 1975.

    Google Scholar 

  23. J H van Vleck. Phys. Rev., 33:467, 1929.

    Article  CAS  Google Scholar 

  24. E L Hill and J H van Vleck. Phys. Rev., 32:250, 1928.

    Article  CAS  Google Scholar 

  25. C M Marian. Ber. Bunsenges. Phys. Chem., 99:254, 1995.

    CAS  Google Scholar 

  26. R W Field. Ber. Bunsenges. Phys. Chem., 86:771, 1982.

    CAS  Google Scholar 

  27. L Engelbrecht and J Hinze. Adv. Chem. Phys., 44:1, 1980.

    Article  CAS  Google Scholar 

  28. A Carrington, D H Levy, and T A Miller. Adv. Chem. Phys., 13:149, 1970.

    Article  Google Scholar 

  29. A Carrington. Microwave Spectroscopy of Free Radicals. Academic Press, 1974.

    Google Scholar 

  30. C M Marian. J. Chem. Phys., 93:1176, 1990.

    Article  CAS  Google Scholar 

  31. C E Moore. Atomic Energy Levels, NBS Circular 467. Natl. Bur. Std., 1949.

    Google Scholar 

  32. C M Marian. J. Chem. Phys., 94:5574, 1991.

    Article  CAS  Google Scholar 

  33. J M Brown, J T Hougen, K P Huber, J W C Johns, I Kopp, H Lefebvre-Brion, A J Merer, D A Ramsay, J Rostas, and R N Zare. J. Mol. Spectrosc., 55:500, 1975.

    Article  CAS  Google Scholar 

  34. H Lefebvre-Brion and R W Field. Perturbations in the spectra of diatomic molecules. Academic Press, 1986.

    Google Scholar 

  35. R S Mulliken and A Christy. Phys. Rev., 38:87, 1931.

    Article  CAS  Google Scholar 

  36. B A Heß, R J Buenker, C M Marian, and S D Peyerimhoff. Chem. Phys., 71:79, 1982.

    Article  Google Scholar 

  37. S J Hutter. Methodologische Aspekte der Behandlung der Spin-Bahn-Kopplung zweiatomiger Moleküle. PhD thesis, University of Bonn, 1994.

    Google Scholar 

  38. D R Yarkony. J. Chem. Phys., 84:2075, 1986.

    Article  CAS  Google Scholar 

  39. O Vahtras, H Ågren, P Jørgensen, H J A Jensen, T Helgaker, and J Olsen. J. Chem. Phys., 96:2118, 1992.

    Article  CAS  Google Scholar 

  40. L L Lohr, Jr. J. Chem. Phys., 45:1362, 1966.

    Article  CAS  Google Scholar 

  41. L Goodman and B J Laurenzi. Adv. Quantum Chem., 4:153, 1968.

    Article  CAS  Google Scholar 

  42. R Klotz, C M Marian, S D Peyerimhoff, B A Heß, and R J Buenker. Chem. Phys., 89:223, 1984.

    Article  CAS  Google Scholar 

  43. G Herzberg. Molecular Spectra and Molecular Structure III. Electronic Spectra and Electronic Structure of Polyatomic Molecules. Van Nostrand Reinhold, 1966.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Kluwer Academic Publishers

About this chapter

Cite this chapter

Marian, C.M. (1997). Fine and Hyperfine Structure. In: Wilson, S., Diercksen, G.H.F. (eds) Problem Solving in Computational Molecular Science. NATO ASI Series, vol 500. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0039-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0039-4_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6506-1

  • Online ISBN: 978-94-009-0039-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics