Skip to main content

Is Hypertriglyceridemia always a Risk Factor?

  • Chapter
Vascular Medicine

Abstract

The concept that hypertriglyceridemia is a risk factor for CHD has been disputed by epidemiological data that showed that an elevated plasma triglyceride concentration is not an independent risk factor of CHD. However, more insight in the heterogeneity of triglyceride-rich lipoproteins and the increased knowledge of lipoprotein metabolism have contributed to the growing notion that accumulation of cholesterol-rich VLDL and chylomicron remnants constitutes an atherogenic risk. An elevated plasma triglyceride concentration associated with obesity, low HDL-cholesterol concentration, dense small LDL particles, insulin resistance and prolonged postprandial lipemia bears a high risk of CHD. In the present chapter, we review the metabolic derangements of triglyceride-rich lipoproteins in hypertriglyceridemia. Endogenous hypertriglyceridemia is a multifactorial disease. Genetic as well as exogenous factors predispose subjects to the development of the characteristic lipoprotein abnormalities. Mutations in the LPL- and apoC-lll gene are important genetic factors, whereas increased amounts of visceral fat and insulin resistance are principal exogenous factors that contribute to the expression of hypertriglyceridemia. Several studies have demonstrated that overproduction of triglycerides and an impaired catabolism contribute to the hypertriglyceridemia. An increased supply of glucose and free fatty acids contributes to overproduction of very low density lipoproteins, thereby increasing the burden of triglyceride-rich lipoproteins on the common lipolytic pathway at the level of lipoprotein lipase. Low lipoprotein lipase activity and increased amounts of lipolysis- inhibiting free fatty acids further impair lipolysis. When dietary measures and hypoglycemic agents have failed to achieve acceptable lipid levels, lipid- lowering drugs should be advised. Fibric acids are the drugs of choice because of their significant improvement of lipid, lipoprotein and fibrinogen levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wetterau JR, Aggerbeck LP, Bouma ME et al. Absence of microsomal triglyceride transfer protein in individuals with abetalipoproteinemia. Science 1992;258:999ā€“1001. .

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  2. Mahley RW, Hussain MM. Chylomicron and chylomicron remnant metabolism. Curr Opin Lipidol 1991;2:170ā€“6.

    ArticleĀ  CASĀ  Google ScholarĀ 

  3. Olivecrona G, Olivecrona T. Triglyceride lipases and atherosclerosis. Curr Opin Lipidol 1995;6:291ā€“305.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  4. Goldberg IJ. Lipoprotein lipase and lipolysis: central roles in lipoprotein metabolism and atherogenesis [Review]. J Lipid Res 1996;37:693ā€“707.

    PubMedĀ  CASĀ  Google ScholarĀ 

  5. de Man FH, de Beer F, van der Laarse A, Smelt AHM, Gevers Leuven JA, Havekes LM. Impaired lipolysis of very low density lipoproteins in type III hyperlipoproteinemia. J Am Coll Cardiol 1 997:160A.

    Google ScholarĀ 

  6. Rensen PCN, van Berkel TJ. Apolipoprotein E effectively inhibits lipoprotein lipase- mediated lipolysis of chylomicron-llike triglyceride-rich lipid emulsions in vitro and in vivo. J Biol Chem 1996;271:14791ā€“9.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  7. Saxena U, Witte LD, Goldberg IJ. Release of endothelial cell lipoprotein lipase by plasma lipoproteins and free fatty acids. J Biol Chem 1989;264:4349ā€“55.

    PubMedĀ  CASĀ  Google ScholarĀ 

  8. Peterson J, Bihain BE, Bengtsson Olivecrona G, Deckelbaum RJ, Carpentier YA, Olivecrona T. Fatty acid control of lipoprotein lipase: a link between energy metabolism and lipid transport. Proc Natl Acad Sci USA 1990;87:909ā€“13. .

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  9. Redgrave TG. Carlson LA. Changes in plasma very low density and low density lipoprotein content, composition, and size after a fatty meal in normo- and hypertriglyceridemic man. J Lipid Res 1979;20:217ā€“29.

    PubMedĀ  CASĀ  Google ScholarĀ 

  10. Berr F. Characterization of chylomicron remnant clearance by retinyl palmitate label in normal humans. J Lipid Res 1992;33:915ā€“30.

    PubMedĀ  CASĀ  Google ScholarĀ 

  11. Cabezas MC, de Bruin TW, Kock LA et al. Simvastatin improves chylomicron remnant removal in familial combined hyperlipidemia without changing chylomicron conversion. Metabolism 1993;42:497ā€“503.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  12. Choi SY, Fong LG, Kirven MJ, Cooper AD. Use of an anti-low density lipoprotein receptor antibody to quantify the role of the LDL receptor in the removal of chylomicron remnants in the mouse in vivo. J Clin Invest 1 991;88:1173ā€“81.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  13. Szanto A, Balasubramaniam S, Roach PD, Nestel PJ. Modulation of the low- density-lipoprotein-receptor-related protein and its relevance to chylomicron- remnant metabolism. Biochetn J 1992;288:791ā€“4.

    CASĀ  Google ScholarĀ 

  14. Kita T, Goldstein JL, Brown MS, Watanabe Y, Homick CA, Havel RJ. Hepatic uptake of chylomicron remnants in WHHL rabbits: a mechanism genetically distinct from the low density lipoprotein receptor. Proc Natl Acad Sci USA 1982;79:3623ā€“7.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  15. Hoeg JM, Demosky SJJ, Gregg RE, Schaefer EJ, Brewer HBJ. Distinct hepatic receptors for low density lipoprotein and apolipoprotein E in humans. Science 1985;227:759ā€“61.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  16. Rubinsztein DC, Cohen JC, Berger GM, Van der Westhuyzen DR, Coetzee GA, Gevers W. Chylomicron remnant clearance from the plasma is normal in familial hypercholesterolemic homozygotes with defined receptor defects. J Clin Invest 1990;86:1306ā€“12.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  17. Willnow TE, Sheng Z, Ishibashi S, Herz J. Inhibition of hepatic chylomicron remnant uptake by gene transfer of a receptor antagonist. Science 1994;264:1471ā€“4.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  18. Willnow TE, Armstrong SA, Hammer RE, Herz J. Functional expression of low density lipoprotein receptor-related protein is controlled by receptor-associated protein in vivo. Proc Natl Acad Sci USA 1995;S2v4537ā€“41.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  19. Mulder M, Lombardi P, Jansen H, van Berkel TJ, Frants RR, Havekes LM. Low density lipoprotein receptor internalizes low density and very low density lipoproteins that are bound to heparan sulfate proteoglycans via lipoprotein lipase. J Biol Chem 1993;268:9369ā€“75.

    PubMedĀ  CASĀ  Google ScholarĀ 

  20. Windler EE, Kovanen PT, Chao YS, Brown MS, Havel RJ, Goldstein JL. The estradiol-stimulated lipoprotein receptor of rat liver. A binding site that mediates the uptake of rat lipoproteins containing apoproteins B and E. J Biol Chem 1980;255:10464ā€“71.

    PubMedĀ  CASĀ  Google ScholarĀ 

  21. Zambon A, Torres A, Bijvoet S et al. Prevention of raised low-density lipoprotein cholesterol in a patient with familial hypercholesterolaemia and lipoprotein lipase deficiency. Lancet 1993;341:1119ā€“21.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  22. Redgrave TG, Small DM. Quantitation of the transfer of surface phospholipid of chylomicrons to the high density lipoprotein fraction during the catabolism of chylomicrons in the rat. J Clin Invest 1979;64:162ā€“71.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  23. Schaefer EJ, Wetzel MG, Bengtsson G, Scow RO, Brewer HB Jr., Olivecrona T. Transfer of human lymph chylomicron constituents to other lipoprotein density fractions during in vitro lipolysis. J Lipid Res 1982;23:1259ā€“73.

    PubMedĀ  CASĀ  Google ScholarĀ 

  24. Patsch JR, Prasad S, Gotto AM Jr., Patsch W. High density lipoprotein2. Relationship of the plasma levels of this lipoprotein species to its composition, to the magnitude of postprandial lipemia, and to the activities of lipoprotein lipase and hepatic lipase. J Clin Invest 1987;80:341-7. .

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  25. Karpe F, Bard JM, Steiner G, CCarlson LA, Fruchart JC, Hamsten A. HDLs and alimentary lipemia. Studies in men with previous myocardial infarction at a young age. Arterioscler Thromb 1993;13:11ā€“22.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  26. Eisenberg S. High density lipoprotein metabolism. J Lipid Res 1984;25:1017ā€“58.

    PubMedĀ  CASĀ  Google ScholarĀ 

  27. Castro Cabezas M, Van Heusden GP et al. Reverse cholesterol transport: relationship between free cholesterol uptake and HDL3 in normolipidaemic and hyperlipidaemic subjects. Eur J Clin Invest 1993;23:122-9 .

    ArticleĀ  Google ScholarĀ 

  28. Austin MA, King MC, Vranizan KM, Krauss RM. Atherogenic lipoprotein phenotype. A proposed genetic marker for coronary heart disease risk. Circulation 1990;82:495-506.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  29. DeFronzo RA, Ferrannini E. Insulin resistance. A multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care 1991;14:173-94.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  30. Rotter JI, Bu X, Cantor RM et al. Multilocus genetic determinants of LDL particle size in coronary artery disease families. Am J hum Genet 1996;58:585-94.

    PubMedĀ  CASĀ  Google ScholarĀ 

  31. Austin MA. Plasma triglyceride as a risk factor for coronary heart disease. The epidemiologic evidence and beyond [see comments]. Am J Epidemiol 1989;129:249ā€“59.

    PubMedĀ  CASĀ  Google ScholarĀ 

  32. Austin MA. Plasma triglyceride and coronary heart disease. Arterioscler Thromb 1991;11:2ā€“14.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  33. Castelli WP. Epidemiology of triglycerides: a view from Framingham. Am J Cardiol 1992;70:3Hā€“9H.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  34. Hokanson JE, Austin MA, Plasma triglyceride level is a risk factor for cardiovascular disease independent of high-density lipoprotein cholesterol level: a meta-analysis of population-based prospective studies. J Cardiovasc Risk 1996;3:213ā€“9.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  35. Abbott RD, Garrison RJ, Wilson PW, Castelli WP. Coronary heart disease risk: the importance of joint relationships among cholesterol levels in individual lipoprotein classes. Prev Med 1982;11;131-41No .

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  36. Tenkanen L, Pietila K, Manninen V, Manttari M. The triglyceride issue revisited. Findings from the Helsinki Heart Study. Arch Intern Med 1994;154:2714ā€“20.

    PubMedĀ  CASĀ  Google ScholarĀ 

  37. Heinrich J, Balleisen L, Schulte H, Assmann G, van de Loo J. Fibrinogen and factor VII in the prediction of coronary risk. Results from the PROCAM study in healthy men. Arterioscler Thromb 1994;14:54ā€“9.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  38. Hamsten A, Walldius G, Dahlen G, Johansson B, de Faire U. Serum lipoproteins and apolipoproteins in young male survivors of myocardial infarction. Atherosclerosis 1986;59:223ā€“35.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  39. Barbir M, Wile D, Trayner I, Aber VR, Thompson GR. High prevalence of hypertriglyceridaemia and apolipoprotein abnormalities in coronary artery disease. Br Heart J 1988;60:397ā€“403.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  40. Drexel H, Amann FW, Beran J et al. Plasma triglycerides and three lipoprotein cholesterol fractions are independent predictors of the extent of coronary atherosclerosis. Circulation 1994;90:2230ā€“5.

    PubMedĀ  CASĀ  Google ScholarĀ 

  41. Tatami R, Mabuchi H, Ueda K et al. Intermediate-density lipoprotein and cholesterol-rich very low density lipoprotein in angiographically determined coronary artery disease. Circulation 1981;64:1174ā€“84.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  42. Steiner G, Schwartz L, Shumak S, Poapst M. The association of increased levels of intermediate-density lipoproteins with smoking and with coronary artery disease. Circulation 1987;75:124ā€“30.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  43. Krauss RM, Lindgren FT, Williams PT et al. Intermediate-density lipoproteins and progression of coronary artery disease in hypercholesterolaemic men. Lancet 1987;2:62ā€“6.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  44. Phillips NR, Waters D, Havel RJ. Plasma lipoproteins and progression of coronary artery disease evaluated by angiography and clinical events. Circulation 1993;88:2762ā€“70.

    PubMedĀ  CASĀ  Google ScholarĀ 

  45. Hodis HN, Mack WJ, Azen SP et al. Triglyceride- and cholesterol-rich lipoproteins have a differential effect on mild/moderate and severe lesion progression as assessed by quantitative coronary angiography in a controlled trial of lovastatin. Circulation 1994;90:42ā€“9.

    PubMedĀ  CASĀ  Google ScholarĀ 

  46. Simpson HS, Williamson CM, Olivecrona T et al. Postprandial lipemia, fenofibrate and coronary artery disease. Atherosclerosis 1990;85:193ā€“202.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  47. Groot PH, van Stiphout WA, Krauss XH et al. Postprandial lipoprotein metabolism in normolipidemic men with and without coronary artery disease. Arterioscler Thromb 1991;11:653ā€“62.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  48. Karpe F, Steiner G, Uffelman K, Olivecrona T, Hamsten A. Postprandial lipoproteins and progression of coronary atherosclerosis. Atherosclerosis 1994;106:83ā€“97.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  49. Karpe F,Tomvall P, Olivecrona T, Steiner G, Carlson LA, Hamsten A. Composition of human low density lipoprotein: effects of postprandial triglyceride-rich lipoproteins, lipoprotein lipase, hepatic lipase and cholesteryl ester transfer protein. Atherosclerosis 1993;98:33ā€“49 .

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  50. Patsch JR, Miesenbock G, Hopferwieser T et al. Relation of triglyceride metabolism and coronary artery disease. Studies in the postprandial state. Arterioscler Thromb 1992;12:1336ā€“45.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  51. Ryu JE, Howard G, Craven TE, Bond MG, Hagaman AP, Crouse JR. Postprandial triglyceridemia and carotid atherosclerosis in middle-aged subjects. Stroke 1992;23:823ā€“8.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  52. Erkelens DW, de Bruin TW, Castro Cabezas M. Tulp syndrome. Lancet 1993;342:1536ā€“7.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  53. Brunzell JD. Familial lipoprotein lipase deficiency and other causes of the chylomicronemia syndromes. In: Scriver RS, Beaudet AL, Sly WS, Valle D, eds. The Metabolic Basis of Inherited Diseases. New York: McGraw-Hill Book Co, 1995:1913ā€“2.

    Google ScholarĀ 

  54. Mailly F, Tugrul Y, Reymer PW et al. A common variant in the gene for lipoprotein lipase (Asp9ā€”> Asn). Functional implications and prevalence in normal and hyperlipidemic subjects. Arterioscler Thromb Vase Biol 1995;15:468ā€“78 .

    ArticleĀ  CASĀ  Google ScholarĀ 

  55. Minnich A, Kessling A, Roy M et al. Prevalence of alleles encoding defective lipoprotein lipase in hypertriglyceridemic patients of French Canadian descent. J Lipid Res 1995;36:117ā€“24.

    PubMedĀ  CASĀ  Google ScholarĀ 

  56. Syvanne M, Antikainen M, Ehnholm S et al. Heterozygosity for ASN(291)SER mutation in the lipoprotein lipase gene in two Finnish pedigrees: Effect of hyperinsulinemia on the expression of hypertriglyceridemia. J Lipid Res 1996;37:727ā€“38.

    PubMedĀ  CASĀ  Google ScholarĀ 

  57. Ito Y, Azrolan N, Oā€™Connell A, Walsh A, Breslow JL. Hypertriglyceridemia as a result of human apo CIII gene expression in transgenic mice. Science 1990;249:790ā€“3.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  58. Maeda N, Li H, Lee D, Oliver P, Quarfordt SH, Osada J. Targeted disruption of the apolipoprotein C-III gene in mice results in hypotriglyceridemia and protection from postprandial hypertriglyceridemia. J Biol Chem 1994;269:23610ā€“6.

    PubMedĀ  CASĀ  Google ScholarĀ 

  59. Henderson HE, Landon SV, Michie J, Berger GM. Association of a DNA polymorphism in the apolipoprotein C-III gene with diverse hyperlipidaemic phenotypes. Hum Genet 1987;75:62ā€“5.

    PubMedĀ  CASĀ  Google ScholarĀ 

  60. Aalto Setala K, Kontula K, Sane T, Nieminen M, Nikkila E. DNA polymorphisms of apolipoprotein A-l/C-lll and insulin genes in familial hypertriglyceridemia and coronary heart disease. Atherosclerosis 1987;66:145ā€“52 .

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  61. Dammerman M, Sandkuijl LA, Halaas JL, Chung W, Breslow JL. An apolipoprotein CIII haplotype protective against hypertriglyceridemia is specified by promoter and 3ā€² untranslated region polymorphisms. Proc Natl Acad Sci USA 1993;90:4562ā€“6.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  62. Zeng Q, Dammerman M, Takada Y, Matsunaga A, Breslow JL, Sasaki J. An apolipoprotein CIII marker associated with hypertriglyceridemia in Caucasians also confers increased risk in a west Japanese population. Hum Genet 1995;95:371ā€“5.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  63. Hoffer MJ, Sijbrands EJ, De Man FH, Smelt AHM, Frants RR. Different associations between polymorphisms in the AP0C3 gene and distinct types of hypertriglyceridemia. (Submitted).

    Google ScholarĀ 

  64. Surguchov AP, Page GP, Smith L, Patsch W, Boerwinkle E. Polymorphic markers in apolipoprotein C-lll gene flanking regions and hypertriglyceridemia. Arterioscler Thromb Vase Biol 1996;16:941ā€“7.

    ArticleĀ  CASĀ  Google ScholarĀ 

  65. Li W, Dammerman M, Smith JD, Metzger S, Breslow JL, Leff T. Common genetic variation in the promoter of the human apo CIII gene abol ishes regulation by insulin and may contribute to hypertriglyceridemia. J Clin Invest 1995;96:2601ā€“5.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  66. de Knijff P, van den Maagdenberg AM, Stalenhoef AF et al. Familial? dysbetalipoproteinemia associated with apolipoprotein E3-Leiden in an extended multigeneration pedigree. J Clin Invest 1991;88:643ā€“55.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  67. Smit M, de Knijff P, van der Kooij Meijs E et al. Genetic heterogeneity in familial dysbetalipoproteinemia. The E2(lys146ā€”gln) variant results in a dominant mode of inheritance. J Lipid Res 1990;31:45ā€“53 .

    PubMedĀ  CASĀ  Google ScholarĀ 

  68. de Knijff P, van den Maagdenberg AM, Frants RR, Havekes LM. Genetic heterogeneity of apolipoprotein E and its influence on plasma lipid and lipoprotein levels, [Review]. Hum Mutat 1994;4:178ā€“94.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  69. Zhao SP, van den Maagdenberg AM, Vroom TF et al. Lipoprotein profiles in a family with two mutants of apolipoprotein E: possible association with hypertriglyceridaemia but not with dysbetalipoproteinaemia. Clin Sci 1994;86:323ā€“9.

    PubMedĀ  CASĀ  Google ScholarĀ 

  70. De Man FH, de Knijff P, de Beer F et al. ApoE allele frequencies and apoE mutations in endogenous hypertriglyceridemia. Atherosclerosis 1997:S34.

    Google ScholarĀ 

  71. Despres JP, Lamarche B, Mauriege P et al. Hyperinsulinemia as an independent risk factor for ischemic heart disease. N Engl J Med 1996;334:952ā€“7.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  72. Mykkanen L, Kuusisto J, Haffner SM, Pyorala K, Laakso M. Hyperinsulinemia predicts multiple atherogenic changes in lipoproteins in elderly subjects. Arterioscler Thromb 1994;14:518ā€“26.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  73. Despres JP. Dyslipidaemia and obesity. Baillieres Clin Endocrinol Metab 1994;8:629ā€“60.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  74. Hunnicutt JW, Hardy RW, Williford J, McDonald JM. Saturated fatty acid-induced insulin resistance in rat adipocytes. Diabetes 1994;43:540ā€“5.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  75. Eliasson B, Attvall S, Taskinen MR, Smith U. The insulin resistance syndrome in smokers is related to smoking habits. Arterioscler Thromb 1994;14:1946ā€“50.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  76. Taskinen MR. Insulin resistance and lipoprotein metabolism. Curr Opin Lipidol 1995;6:153ā€“60.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  77. Coppack SW, Evans RD, Fisher RM et al. Adipose tissue metabolism in obesity: lipase action in vivo before and after a mixed meal. Metabolism 1992;41:264ā€“72.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  78. Knudsen P, Eriksson J, Lahdenpera S, Kahri J, Groop L, Taskinen MR. Changes of lipolytic enzymes cluster with insulin resistance syndrome, Botnia Study Group. Diabetologia 1995;38:344ā€“50.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  79. Stone NJ. Secondary causes of hyperlipidemia. Med Clin North Am 1994;78:117ā€“41.

    PubMedĀ  CASĀ  Google ScholarĀ 

  80. Knudsen P, Murtomaki S, Antikainen Ml, Ehnholm S, Taskinen MR, Ehnholm C. Lipoprotein lipase gene mutations in Finish hypertriglyceridemic patients. In: 1996 .

    Google ScholarĀ 

  81. Pownall HJ. Dietary ethanol is associated with reduced lipolysis of intestinally derived lipoproteins. J Lipid Res 1994;35:2105ā€“13.

    PubMedĀ  CASĀ  Google ScholarĀ 

  82. De Man FH, de Beer F, Smelt AHM et al. Short-term effects of dietary counselling in patients with endogenous hypertriglyceridemia. Atherosclerosis 1997:S26.

    Google ScholarĀ 

  83. De Man FH, Cabezas MC, Van Barlingen HH, Erkelens DW, de Bruin TW. Triglyceride-rich lipoproteins in non-insulin-dependent diabetes mellitus: postprandial metabolism and relation to premature atherosclerosis. Eur J Clin Invest 1996;26:89ā€“108.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  84. Kortlandt W, Erkelens DW. Glycation and lipoproteins. Diab Nutr Metab 1993;6:231ā€“9.

    Google ScholarĀ 

  85. Haffner SM. The Scandinavian Simvastatin Survival Study (4S) subgroup analysis of diabetic subjects: implications for prevention of coronary heart disease. Diabetes Care 1997;20:469ā€“71.

    PubMedĀ  CASĀ  Google ScholarĀ 

  86. Series JJ,Biggart EM, Oā€™Reilly DS, Packard CJ, Shepherd J. Thyroid dysfunction and hypercholesterolaemia in the general population of Glasgow, Scotland. Clin Chim Acta 1988;172:217-21.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  87. Ball MJ, Griffiths D, Thorogood M. Asymptomatic hypothyroidism and hypercholesterolaemia. J R Soc Med 1991;84:527ā€“9.

    PubMedĀ  CASĀ  Google ScholarĀ 

  88. Glueck CJ, Lang J, Tracy T, Speirs J. The common finding of covert hypothyroidism at initial clinical evaluation for hyperlipoproteinemia. Clin Chim Acta 1991;201:113ā€“22No.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  89. Gevers Leuven JA. Sex steroids and lipoprotein metabolism. Pharmacol Ther 1994;64:99ā€“126.

    Google ScholarĀ 

  90. Rapp JH, Lespine A, Hamilton RL et al. Triglyceride-rich lipoproteins isolated by selected-affinity anti-apolipoprotein B immunosorption from human atherosclerotic plaque. Arterioscler Thromb 1994;14:1767ā€“74.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  91. Gianturco SH, Bradley WA, Gotto AM Jr. Morrisett JD, Peavy DL. Hypertriglyceridemic very low density lipoproteins induce triglyceride synthesis and accumulation in mouse peritoneal macrophages. J Clin Invest 1982;70:168ā€“78.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  92. Austin MA, Breslow JL, Hennekens CH, Buring JE, Willett WC, Krauss RM. Low- density lipoprotein subclass patterns and risk of myocardial infarction. JAMA 1988;260:1917ā€“21.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  93. Bagdade JD, Lane JT, Subbaiah PV, Otto ME, Ritter MC. Accelerated cholesteryl ester transfer in noninsulin-dependent diabetes mellitus. Atherosclerosis 1993;104:69ā€“77.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  94. Zilversmit DB. Atherogenesis: a postprandial phenomenon. Circulation 1979;60:473ā€“85.

    PubMedĀ  CASĀ  Google ScholarĀ 

  95. Simons LA, Dwyer T, Simons J et al. Chylomicrons and chylomicron remnants in coronary artery disease: a case-control study. Atherosclerosis 1987;65:181ā€“9.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  96. Floren CH, Albers JJ, Bierman EL. Uptake of chylomicron remnants causes cholesterol accumulation in cultured human arterial smooth muscle cells. Biochim Biophys Acta 1981;663:336ā€“49.

    PubMedĀ  CASĀ  Google ScholarĀ 

  97. Steiner G. Hypertriglyceridemia and carbohydrate intolerance: interrelations and therapeutic implications. Am J Cardiol 1986;57:27Gā€“30G.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  98. Haffner SM, Valdez RA, Hazuda HP, Mitchell BD, Morales PA, Stern MP. Prospective analysis of the insulin-resistance syndrome (syndrome X). Diabetes 1992;41 :715-22.

    CASĀ  Google ScholarĀ 

  99. Haffner SM, Valdez RA, Hazuda HP, Mitchell BD, Morales PA, Stern MP. Prospective analysis of the insulin-resistance syndrome (syndrome X). Diabetes 1992;41:715ā€“22.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  100. Kaplan NM. The deadly quartet. Upper-body obesity, glucose intolerance, hypertriglyceridemia, and hypertension. Arch Intern Med 1989;149:15140ā€“20.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  101. Meade TW, Mellows S, Brozovic M et al. Haemostatic function and ischaemic heart disease: principal results of the Northwick Park Heart Study. Lancet 1986;2:533ā€“7.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  102. Assmann G, Schulte H. The importance of triglycerides: results from the Prospective Cardiovascular Munster (PRGCAM) Study. Eur J Epidemiol 1992;8 Suppl.1:99ā€“103.

    Google ScholarĀ 

  103. Zitoun D, Bara L, Basdevant A, Samama MM. Levels of factor VIIc associated with decreased tissue factor pathway inhibitor and increased plasminogen activator inhibitor-1 in dyslipidemias, Arterioscler Thromb Vase Bioll 1996;16:77ā€“81.

    ArticleĀ  CASĀ  Google ScholarĀ 

  104. Silveira A, Karpe F, Blomback M, Steiner G, Walldius G, Hamsten A. Activation of coagulation factor VII during alimentary lipemia. Arterioscler Thromb 1994; 14:60ā€“9.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  105. Benderly M, Graff E, Reicher Reiss H, Behar S, Brunner D, Goldbourt U. Fibrinogen is a predictor of mortality in coronary heart disease patients. The Bezafibrate Infarction Prevention (BIP) Study Group. Arterioscler Thromb Vasc Biol 1996;16:351ā€“6.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  106. Kromhout D, Katan MB, Havekes LM, Groener A, Hornstra G, de Lezenne Coulander C. The effects of 26 years of habitual fish consumption on serum lipid and lipoprotein levels (The Zutphen study). Nutr Metab Cardiovasc Dis 1996;6:65ā€“71.

    Google ScholarĀ 

  107. Harris WS. Fish oils and plasma lipid and lipoprotein metabolism in humans: a critical review. J Lipid Res 1989;30:785ā€“807.

    PubMedĀ  CASĀ  Google ScholarĀ 

  108. Hau MF, Smelt AH, Bindels AJ et al. Effects of fish oil on oxidation of very low density lipoprotein in hypertriglyceridemic patients. Arterioscler Thromb Vasc Biol 1996;16:1197ā€“202.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  109. Wahlberg G, Walldius G, Efendic S. Effects of nicotinic acid on glucose tolerance and glucose incorporation into adipose tissue in hypertriglyceridaemia. Scand J Clin Lab Invest 1992;52:537ā€“45.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  110. Tornvall P, Walldius G. A comparison between nicotinic acid and acipimox in hypertriglyceridaemia-effects on serum lipids, lipoproteins, glucose tolerance and tolerability. J Intern Med 1991;230:415ā€“211.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  111. Noma A, Maeda S, Okuno M, Abe A, Muto Y. Reduction of serum lipoprotein(a) levels in hyperlipidaemic patients with alpha-tocopheryl nicotinate. Atherosclerosis 1990;84:213ā€“7.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  112. Grundy SM, Vega GL. Two different views of the relationship of hypertriglyceridemia to coronary heart disease. Implications for treatment. Arch Intern Med 1992;152:28ā€“34.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  113. Bakker Arkema RG, Davidson MH, Goldstein RJ et al. Efficacy and safety of a new HMG-CoA reductase inhibitor, atorvastatin, in patients with hypertriglyceridemia. JAMA 1996;275:128ā€“33 .

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  114. Frick MH, Elo O, Haapa K et al. Helsinki Heart Study: primary-prevention trial with gemfibrozil in middle-aged men with dyslipidemia. Safety of treatment, changes in risk factors, and incidence of coronary heart disease. N Engl J Med 1987;317:1237ā€“45.

    Google ScholarĀ 

  115. Ericsson CG, Hamsten A, Nilsson J, Grip L, Svane B, de Faire U. Angiographic assessment of effects of bezafibrate on progression of coronary artery disease in young male postinfarction patients. Lancet 1996;347:849ā€“53.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  116. Carlson LA, Rosenhamer G. Reduction of mortality in the Stockholm Ischaemic Heart Disease Secondary Prevention Study by combined treatment with clofibrate and nicotinic acid. Acta Med Scand 1988;223:405ā€“18.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  117. Manninen V, Tenkanen L, Koskinen P et al. Joint effects of serum triglyceride and LDL cholesterol and HDL cholesterol concentrations on coronary heart disease risk in the Helsinki Heart Study. Implications for treatment [see comments]. Circulation 1992;85:37ā€“45.

    PubMedĀ  CASĀ  Google ScholarĀ 

  118. Auwerx J, Schoonjans K, Fruchart JC, Staels B. Transcriptional control of triglyceride metabolism: fibrates and fatty acids change the expression of the LPL and apo C-III genes by activating the nuclear receptor PPAR. Atherosclerosis 1996; 124 Suppl:S290ā€“37.

    Google ScholarĀ 

  119. Bastow MD, Durrington PN, Ishola M. Hypertriglyceridemia and hyperuricemia: effects of two fibric acid derivatives (bezafibrate and fenofibrate) in a double-blind, placebo-controlled trial. Metabolism 1988;37:21 7ā€“20.

    ArticleĀ  Google ScholarĀ 

  120. Vessby B, Lithell H. Interruption of long-term lipid-lowenng treatment with bezafibrate in hypertriglyceridaemic patients. Effects on lipoprotein composition, lipase activities and the plasma lipid fatty acid spectrum. Atherosclerosis 1990;82:137ā€“43.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  121. Yang CY, Gu YH, Xie YH al. Effect of gemfibrozil on very low density lipoprotein composition and low density lipoprotein size in patients with hypertriglyceridemia or combined hyperiipidemia. Atherosclerosis 1986;126:105ā€“16.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  122. Almer LO, Kjellstrom T. The fibrinolytic system and coagulation during bezafibrate treatment of hypertriglyceridemia. Atherosclerosis 1986;61:81ā€“5.

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  123. Petrogiannopoulos C, Zaharof A, Labropoulos L, Tzoumani A, s N, Poulikakos J. The influence of gemfibrozil on plasma fibrinogen levels in patients with primary hypertriglyceridemia. In: 1996 .

    Google ScholarĀ 

  124. Tikkanen MJ. Fibric acid derivates. Curr Opin Lipidol 1992;3:29ā€“33.

    ArticleĀ  CASĀ  Google ScholarĀ 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 1997 Kluwer Academic Pulblishers

About this chapter

Cite this chapter

de Man, F.H.A.F., Hoffer, M.J.V., Smelt, A.H.M., Gevers Leuven, J.A., van der Laarse, A. (1997). Is Hypertriglyceridemia always a Risk Factor?. In: van der Wall, E.E., Cats, V.M., Baan, J. (eds) Vascular Medicine. Developments in Cardiovascular Medicine, vol 197. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0037-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0037-0_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6505-4

  • Online ISBN: 978-94-009-0037-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics