Skip to main content

Update on the Laboratory Aspects of the Cellular Immunotherapy of Human Cancer

  • Chapter

Abstract

There has been tremendous progress made in the field of cellular immunotherapy over the last six years since the publication of the second edition of Principles of Cancer Biotherapy. In our chapter in that Edition, we focused on the nonspecific arm of the cellular immune response (LAK cells, macrophages) and how it could be utilized clinically to cure metastatic cancer [103]. We discussed rapidly developing large scale cell culture technologies used to generate LAK cells and macrophages. Our emphasis was on the generation of the cells in such a way that they could be routinely infused into cancer patients. At the time, we could only hint at what has occurred between 1991 and 1996 in terms of basic lymphocyte biology and cellular immunotherapy. These advances have dramatically affected our most recent approaches to immunotherapy. While we introduced the potential of the specific arm of the immune system in fighting cancer, we could only speculate on the impact tumor infiltrating lymphocytes (TIL) would make in the immunotherapy of tumors. In addition, the various specificities of TIL have allowed the identification of lymphocyte defined tumor antigens on melanoma tumor cells. These discoveries have been of immense value toward expanding and improving our approach to immunotherapies. It is not unreasonable to plan for the day when all manipulations of the immune system will be accomplished in vivo through the use of specific vaccines.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aebersold P, Hyatt C, Johnson S, et al. Lysis of autologous melanoma cells by tumor-infiltrating lymphocytes: Association with clinical response. J Natl Cancer Inst 1991;83:932–937.

    PubMed  CAS  Google Scholar 

  2. Aoki Y, Takakuwa K, Kodama S, et al. Use of adoptive transfer of tumor-infiltrating lymphocytes alone or in combination with cisplatin containing chemotherapy in patients with epithelial ovarian cancer. Cancer Research 1991; 51: 1934–1939.

    PubMed  CAS  Google Scholar 

  3. Arienti F, Belli F, Rivoltini L, et al. Adoptive immunotherapy of advanced melanoma patients with interleukin- 2 (IL-2) and tumor infiltrating lymphocytes selected in vitro with low doses of IL-2. Cancer Immunol Immunother 1993; 36: 315–322.

    PubMed  CAS  Google Scholar 

  4. Baxevanis CN, Dedoussis GVZ, Papadopoulos NG, et al. Tumor specific cytolysis by tumor infiltrating lymphocytes in breast cancer. Cancer 1994; 74: 1275–1282.

    PubMed  CAS  Google Scholar 

  5. Belldegrun A, Muul LM, Rosenberg SA. Interleukin 2 expanded tumor infiltrating lymphocytes in human renal cell cancer: Isolation, characterization, and anti-tumor activity. Cancer Research 1988; 48: 206–214.

    PubMed  CAS  Google Scholar 

  6. Belldegrun A, Pierce W, Kaboo R, et al. Interferon-alpha primed tumor infiltrating lymphocytes combined with interleukin-2 and interferon-alpha as therapy for metastatic renal cell carcinoma. J Urol 1993; 150: 1384–1390.

    PubMed  CAS  Google Scholar 

  7. Bodmer H, Viville S, Benoist C, et al. Diversity of endogenous epitopes bound to MHC class II molecules. Science 1994; 263: 1284–1286.

    PubMed  CAS  Google Scholar 

  8. Boel P, Wildmann C, Sensi ML, et al. Bage: a new geneencoding an antigen recognized on human melanomas by cytolytic T lymphocytes. Immunity 1995; 2: 167–174.

    PubMed  CAS  Google Scholar 

  9. Brichard V, VanPel A, Wolfel T, et al. The tyrosinase gene coded for an antigen recognized by autologous cytolytic T lymphocytes on HLA-A2+ melanoma. J Exp Med 1993; 178:489–495.

    PubMed  CAS  Google Scholar 

  10. Celis E, Tsai V, Crimi C, et al. Induction of anti-tumor cytotoxic T lymphocytes in normal humans using primary cultures and synthetic peptide epitopes. Proc Natl Acad Sci 1994; 91:2105–2109.

    PubMed  CAS  Google Scholar 

  11. Chicz RM, Urban RG, Lane WS, et al. Predominant naturally processed peptidesbound to HLA-DR 1 are derived from MHC related molecules and are heterogeneous in size. Nature 1992; 358: 764–768.

    PubMed  CAS  Google Scholar 

  12. Coulie PG, Brichard V, VanPael A, et al. A new gene coding for a differentiation antigen recognized by autologous cytolytic T lymphocytes on HLA-A2 melanomas. J Exp Med 1994; 180: 35–42.

    PubMed  CAS  Google Scholar 

  13. Crowley NJ, Slingluff CL, Darrow TL, Siegler H. Generation of human autologous melanoma specific cytotoxic T cells using HLA-A2 matched allogeneic melanomas. Cancer Research 1990; 50: 492–500.

    PubMed  CAS  Google Scholar 

  14. Dillman RO, Oldham RK, Barth NM, et al. Continuous interleukin-2 and tumor infiltrating lymphocytes as treatment of advanced melanoma. A National Biotherapy Study Group Trial. Cancer 1991; 68: 1–14.

    PubMed  CAS  Google Scholar 

  15. Dillman RO, Nayak SK, and Beutel L. Establishing in vitro cultures of autologous tumor cells for use in active specific immunotherapy. J Immunotherapy 1993; 14: 65–69.

    CAS  Google Scholar 

  16. Dupere S, Obiri N, Lackey A, et al. Patterns of cytokines released by peripheral blood leukocytes of normal donors and cancer patients during interleukin-2 activation in vitro. J Biol Resp Modif 1990; 9 :140–148.

    CAS  Google Scholar 

  17. Falk K, Rotzschke O, Stevanovic S, et al. Allele specific motifs revealed by sequencing of self peptides eluted from MHC molecules. Nature 1993; 351: 290–296.

    Google Scholar 

  18. Finke JH, Rayman P, Alexander J, et al. Characterization of the cytolytic activity of CD4+ and cytotoxic activity. Int J of Cancer 1990; 45: 119–124.

    Google Scholar 

  19. Finke JH, Rayman P, Edinger R, et al. Characterization of human renal cell carcinoma specific cytotoxic CD8+ T cell line. J Immunother 1992; 11: 1–11.

    PubMed  CAS  Google Scholar 

  20. Finke JH, Zea AH, Stanley J, et al. Loss of T cell receptor £ chain and p56lck in T-cells infiltrating human renal cell carcinoma. Cancer Research 1993; 53: 5613–5616.

    PubMed  CAS  Google Scholar 

  21. Fisher B, Packard BS, Read EJ, et al. Tumor localization of adoptively transferred indium-Ill labeled tumor infiltrating lymphocytes in patients with metastatic melanoma. J Clin Oncol 1989; 7: 250–260.

    PubMed  CAS  Google Scholar 

  22. Freedman RS, Edwards CL, Kavanagh JJ, et al. Intraperitoneal adoptive immunotherapy of ovarian carcinoma with tumor infiltrating lymphocytes and low-dose recombinant interleukin-2: A pilot study. J Immunother 1994; 16: 198–210.

    CAS  Google Scholar 

  23. Gaugler B, VanDen Eynde B, VanDer Bruggen P, et al. Human gene Mage-3 codes for an antigen recognized on a melanoma by autologous cytolytic T lymphocytes. J Exp Med 1994; 179:921–927.

    PubMed  CAS  Google Scholar 

  24. Gazdar AF, and Oie HK. Cell culture methods for human lung cancer. Cancer Genet Cytogenet 1986; 19: 5–10.

    PubMed  CAS  Google Scholar 

  25. Gervois N, Heuze F, Diez E, and Jotereau F. Selective expansion of specific anti-tumor CD8+ cytotoxic T lymphocyte clone in the bulk culture of tumor infiltrating lymphocytes from a melanoma patient: cytotoxic activity and T cell receptor gene rearrangements. Eur J Immunol 1990; 20: 825–831.

    PubMed  CAS  Google Scholar 

  26. Griffith KD, Read EJ, Carasquillo JA, et al. In vivo distribution of adoptively transferred Indium-Ill labeled tumor infiltrating lymphocytes and peripheral blood lymphocytes in patients with metastatic melanoma. J Natl Cancer Inst 1989; 81: 1709–1717.

    PubMed  CAS  Google Scholar 

  27. Haas GP, Solomon D, Rosenberg SA. Tumor infiltrating lymphocytes from nonrenal urological malignancies. Cancer Immunol Immunother 1990; 30: 342–350.

    PubMed  CAS  Google Scholar 

  28. Hayakawa K, Salmeron MA, Parkinson DR, et al. Study of TIL for adoptive therapy of renal cell cancer and metastatic melanoma: Sequential proliferation of cytotoxic natural killer and noncytotoxic T cells in RCC.J Immunother 1991; 10: 313–325.

    PubMed  CAS  Google Scholar 

  29. Heo DS, Whiteside TL, Johnson JT, et al. Long term interleukin-2 dependentgrowth and cytotoxic activity of tumor infiltrating lymphocytes from human squamous cell carcinomas of the head and neck. Cancer Research 1987;47:6353–6362.

    PubMed  CAS  Google Scholar 

  30. Horn SS, Topalian SL, Simonis T, et al. Common expression of melanoma tumor-associated antigens recognized by human tumor infiltrating lymphocytes: Analysis by human lymphocyte antigen restriction. J Immunother 1991;10:153–164.

    Google Scholar 

  31. Horn SS, Schwartzentruber DJ, Rosenberg SA, Topalian SL. Specific release of cytokines by lymphocytes infiltrating human melanomas in response to shared melanoma tumor antigens. J Immunother 1993a; 13: 18–30.

    Google Scholar 

  32. Horn SS, Rosenberg SA, Topalian SL. Specific immune recognition of autologous tumor by lymphocytes infiltrating colon carcinomas: analysis by cytokine secretion. Cancer Immunol Immunother 1993b; 36: 1–8.

    Google Scholar 

  33. Ioannides CG, Freedman RS, Platsoucas CD, et al. Cytotoxic T cell clones isolated from ovarian tumor infiltrating lymphocytes recognize multiple antigenic epitopes on autologous tumor cells. J Immunol 1991; 146: 1700–1707.

    PubMed  CAS  Google Scholar 

  34. Ionaaides CG, Fisk B, Jerome KR, et al. Cytotoxic T cells from ovarian malignant tumors can recognize polymorphic epithelial mucin core peptides. J Immunol 1993; 151:3693–3703.

    Google Scholar 

  35. Itoh K, Tilden AB, Balch CM. Interleukin-2 activation of cytotoxic T lymphocytes infiltrating into human metastatic melanomas. Cancer Res 1986; 46: 3011–3017.

    PubMed  CAS  Google Scholar 

  36. Itoh K, Platsoucas DC, Balch CM. Autologous tumorspecific cytotoxic T lymphocytes in the infiltrate of human metastatic melanomas: activation by interleukin-2 and autologous tumor tumor cells and involvement of the T cell receptor. J Exp Med 1988; 168: 1419–1441.

    PubMed  CAS  Google Scholar 

  37. Itoh K, Balch CM, Murray JL, et al. Immunological properties of melanoma tumor-infiltrating lymphocytes before and after IL-2 based biotherapies. In Vivo 1991; 5: 647–654.

    PubMed  CAS  Google Scholar 

  38. Itoh K, Hayakawa K, Salmeron MA, et al. Alterations in interactions between tumor infiltrating lymphocytes and tumor cells in human melanomas after chemotherapy or immunotherapy. Cancer Immunol Immunother 1991; 33: 238–246.

    PubMed  CAS  Google Scholar 

  39. Jacob M-C, Piccinni M-P, Bonnefoix T, et al. T lymphocytes from invaded lymph nodes in patients with B-cell derived non-Hodgkins lymphoma: Reactivity toward the malignant clone. Blood 1990; 75: 1154–1160.

    PubMed  CAS  Google Scholar 

  40. Jerome KR, Barnd DL, Bendt KM, et al. Cytotoxic TLymphocytes derived from patients with breast adenocarcinoma recognize an epitope present on the protein core of a mucin molecule preferentially expressed by malignant cells. Cancer Research 1991; 51: 2908–2916.

    PubMed  CAS  Google Scholar 

  41. Jerome KR, Domenech N, Finn OJ. Tumor-specific cytotoxic T cell clones from patients with breast and pancreatic adenocarcinoma recognize EBV-immortalized B cellstransfected with polymporphic epithelial mucin complimentaryDNA.J Immunology 1993; 151: 1654–1662.

    CAS  Google Scholar 

  42. Kawakami Y, Eliyahu S, Delgado CH, et al. Identification of a human melanoma antigen recognized by tumor infiltrating lymphocytes associated with in vivo tumor rejection. Proc Natl Acad Sci 1994; 91: 6458–6462.

    PubMed  CAS  Google Scholar 

  43. Kawakami Y, Robbins PF, Wang RF, Rosenberg SA. Identification of tumor regression antigens in melanoma. In: Biologic Therapy of Cancer, 2nd Edition, DeVita, VT, Hellman S, and Rosenberg SA, Eds. 1996; 3-21.

    Google Scholar 

  44. Kawakami Y, Eliyahu S, Delgado CH, et al. Identification of a human melanoma antigen recognized by tumor infiltrating lymphocytes associated with in vivo tumor rejection. Proc Natl Acad Sci USA 1994; 91: 6458–6462.

    PubMed  CAS  Google Scholar 

  45. Kawakami Y, Eliyahu S, Delgado CH, et al. Cloning of the gene coding for a shared human melanoma antigen recognized by autologous T cells infiltrating into tumor. Proc Natl Acad Sci USA 1994; 3515-3519.

    Google Scholar 

  46. Knazek RA, Wu YW, Aebersold PA, Rosenberg SA. Culture of tumor infiltrating lymphocytes in hollow fiber bioreactors. J Immunol Met 1990; 127: 29–37.

    CAS  Google Scholar 

  47. Koo AS, Tso CL, Shimabukuro T, et al. Autologous tumor specific cytotoxicity of tumor infiltrating lymphocytes derived from human renal cell carcinoma. J Immunother 1991; 10: 347–354.

    PubMed  CAS  Google Scholar 

  48. Kradin RL, Boyle LA, Preffer FI, et al. Tumor derived interleukin-2 dependent lymphocytes in adoptive immunotherapy of lung cancer. Cancer Immunol Immunother 1987; 24: 76–85.

    PubMed  CAS  Google Scholar 

  49. Kradin RL, Kurnick JT, Lazarus DS, et al. Tumor infiltrating lymphocytes and interleukin-2 in treatment of advanced cancer. Lancet 1989; 1: 577–580.

    PubMed  CAS  Google Scholar 

  50. Lewko WM, Good RW, Bowman D, et al. Growth of tumor derived activated cells for the treatment of cancer. Cancer Biotherapy 1994; 9: 211–224.

    PubMed  CAS  Google Scholar 

  51. Lewko WM, Ladd P, Hubbard D, et al. Tumor acquisition, propagation and preservation: The culture of human colorectal cancer. Cancer 1989; 64: 1600–1612.

    PubMed  CAS  Google Scholar 

  52. Linehan DC, Goedegebuure PS, Peoples GE, et al. Tumor specific and HLA-A2 restricted cytolysis by tumor associated lymphocytes in human metastatic breast cancer.J Immunol 1995; 155:4486–4491.

    PubMed  CAS  Google Scholar 

  53. Lopez M, Fechtenbaum J, David B, et al. Adoptive immunotherapy with activated macrophages grown in vitro fromblood monocytes in cancer patients: A pilot study. J Immunother 1992; 11:209–217.

    PubMed  CAS  Google Scholar 

  54. Luna-Fineman S, Lee JE, Wesley PK, et al. Human cytotoxic T lymphocytes specific for autologous follicular lymphoma recognize immunoglobulin in a major histocompatibility complex restricted fashion. Cancer 1992; 70:2181–2191.

    PubMed  CAS  Google Scholar 

  55. Maleckar JR, Friddell CS, Sferruzza A, et al. Activation and expansion of tumor derived activated cells for therapeutic use. J Natl Cancer Inst 1989; 81: 1655–1660.

    PubMed  CAS  Google Scholar 

  56. Melioli G, Ratto G, Guastella M, et al. Isolation and in vitro expansion of lymphocytes infiltrating non-small cell lung carcinoma: Functional and molecular characterization for their use in adoptive immunotherapy. Eur J of Cancer 1994; 30: 97–102.

    Google Scholar 

  57. Miyatake SM, Hanada H, Yamishita J, et al. Induction of human glioma specific cytotoxic T lymphocyte lines by autologous tumor stimulation and interleukin-2. J Neuro Oncol 1986; 4: 55–64.

    CAS  Google Scholar 

  58. Morita T, Salmeron MA, Hayakawa K, et al. T cell functions of IL-2 activated tumor infiltrating lymphocytes from renal cell carcinoma. Regional Immunology 1992; 4: 225–235.

    PubMed  CAS  Google Scholar 

  59. Muul LM, Spiess PJ, Director EP, Rosenberg SA. Identification of specific cytolytic immune responses against autologous tumor in humans bearing malignant melanoma. J Immunol 1987a; 138: 989–995.

    PubMed  CAS  Google Scholar 

  60. Muul LM, Director EP, Hyatt C, Rosenberg SA. Large scale production of human lymphokine activated killer cells for use in adoptive immunotherapy. Jr Immunological Methods 1986; 88: 265–273.

    CAS  Google Scholar 

  61. Nakashima M, Watanabe T, Koprowski H, et al. In vitro expansion of tumor specific, HLA restricted human CD8+ cytolytic T lymphocytes. Cell Immunol 1994; 155: 53–61.

    PubMed  CAS  Google Scholar 

  62. Oliver G, Yannelli JR, Solomon D. Tumor infiltrating lymphocytes: A cytologic, phenotypic, and morphometric analysis. Acta Cytologica 1996; 40: 691–694.

    PubMed  CAS  Google Scholar 

  63. Peoples GE, Gordegebuure PS, Andrews JVR, et al. HLAA2 presents shared tumor associated antigens derived from endogenous proteins in ovarian cancer. J Immunol 1993; 151:5481–5491.

    PubMed  CAS  Google Scholar 

  64. Pockaj BA, Sherry RM, Wei JP, et al. Localization of 111 Indium-labeled tumor infiltrating lymphocytes to tumor in patients receiving adoptive immunotherapy. Cancer 1994; 73: 1731–1737.

    PubMed  CAS  Google Scholar 

  65. Rammensee H-G, Falk K, Rotzschke O. Peptides naturally presented by MHC class I molecules. Ann Rev Immunol 1993; 11:213–244.

    CAS  Google Scholar 

  66. Rivoltini L, Kawakami Y, Sakaguchi K, et al. Induction of tumor reactive CTL from peripheral blood and tumor infiltrating lymphocytes of melanoma patients by in vitro stimulation with an immunodominant peptide of the human melanoma antigen MART-1. J Immunol 1995; 154:2257–2265.

    PubMed  CAS  Google Scholar 

  67. Robbins PF, El-Gamil M, Kawakami Y, et al. Recognition of tyrosinase by tumor infiltrating lymphocytes from a patient responding to immunotherapy. Cancer Res 1994; 54:3124–3126.

    PubMed  CAS  Google Scholar 

  68. Robbins PF, El-Gamil M, Kawakami Y, et al. Recognition of tyrosinase by tumor infiltrating lymphocytes from a patient responding to immunotherapy. Cancer Res 1994; 54:3124–3129.

    PubMed  CAS  Google Scholar 

  69. Robbins PF, El Gamil M, Li YF, et al. A mutated (3- catenin gene encodes a melanoma specific antigen recognized by tumor infiltrating lymphocytes. J Exp Med 1996; In Press.

    Google Scholar 

  70. Robbins PF, ElGamil M, Li YF. Cloning of a new geneencoding an antigen recognized by specific HLA-A24 restricted tumor infiltrating lymphocytes. J Immunol 1995; 154: 5944–5962.

    PubMed  CAS  Google Scholar 

  71. Rosenberg SA, Lotze MT, Aebersold PM, et al. Prospective randomized trial of high dose interleukin-2 alone or with lymphokine activated killer cells for the treatment of patients with advanced cancer. J Natl Cancer Inst 1993; 85: 622–632.

    PubMed  CAS  Google Scholar 

  72. Rosenberg SA. Cell transfer therapy: Clinical applications. In: Biologic Therapy of Cancer. Philadelphia: Lippincott, 1995:487–506.

    Google Scholar 

  73. Rosenberg SA, Speiss P, Lafreniere R. A new approach to the adoptive immunotherapy of cancer with tumor infiltrating lymphocytes. Science 1986; 223:1318–1321.

    Google Scholar 

  74. Rosenberg SA, Packard BS, Aebersold PA, et al. Use of tumor infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. New Engl Jrn of Med 1988; 319: 1676–1680.

    CAS  Google Scholar 

  75. Rosenberg SA, Yannelli JR, Yang JC, et al. Treatment of patients with metastatic melanoma with autologous tumor infiltrating lymphocytes and interleukin-2. J Natl Cancer Inst 1994; 86: 1159–1166.

    PubMed  CAS  Google Scholar 

  76. Salmeron MA, Morita T, Seki H, et al. Lymphokine production by human melanoma tumor infiltrating lymphocytes. Cancer Immunol Immunother 1992; 35 : 211–217.

    PubMed  CAS  Google Scholar 

  77. Schendel DJ, Gansbacher B. Tumor specific lysis of human renal cell carcinomas by tumor infiltrating lymphocytes: Modulation of recognition through retrovirus transduction of tumor-cells with interleukin-2 complementaryDNA and exogenous alpha interferon treatment. Cancer Research 1993; 53:4020–4025.

    PubMed  CAS  Google Scholar 

  78. Schendel DJ, Gansbacher B, Oberneder R, et al. Tumor specific lysis of human renal cell carcinomas by tumor infiltrating lymphocytes. J Immunol 1993; 151: 4209–4220.

    PubMed  CAS  Google Scholar 

  79. Schwartzentruber DJ, Topalian SL, Mancini M, Rosenberg SA. Specific release of granulocyte-macrophage colony stimulating factor, tumor necrosis factor a, and interferon-y by human tumor infiltrating lymphocytes after autologous tumor stimulation. J Immunology 1991; 146:3674–3681.

    CAS  Google Scholar 

  80. Schwartzentruber DL, Horn SS, Dadmarz R, et al. In vitro predictors of therapeutic response in melanoma patients receiving tumor infiltrating lymphocytes and interleukin- 2 .J Clin Oncol 1994; 12: 1475–1483.

    PubMed  CAS  Google Scholar 

  81. Schwartzentruber DJ, Solomon D, Rosenberg SA, Topalian SL. Characterization of lymphocytes infiltrating human breast cancer: specific immune reactivitydetected by measuring cytokine secretion. J Immunother 1992; 12: 1–12.

    PubMed  CAS  Google Scholar 

  82. Schwartzentruber DJ, Stetler-Stevenson M, Rosenberg SA, Topalian SL. Tumor-infiltrating lymphocytes derived from select B-cell lymphomas secrete granulocytemacrophage colony stimulating factor and tumor necrosis factor-a in response to autologous tumor stimulation. Blood 1993; 82: 1204–1211.

    PubMed  CAS  Google Scholar 

  83. Shi I, Bonnefoix T, Heuze-Le Vacon F, et al. Auto-tumor reactive T-cell clones among tumor infiltrating T lymphocytes in B-cell non-Hodgkin’s lymphomas . British Jrn of Haematology 1995; 90: 837–843.

    CAS  Google Scholar 

  84. Shu S, Chou T, and Rosenberg SA. Generation from tumor bearing mice of lymphocytes with in vitro therapeutic efficacy. J Immunol 1987; 139: 295–304.

    PubMed  CAS  Google Scholar 

  85. Sica D, Rayman P, Stanley J, et al. Interleukin-7 enhances the proliferation and effector function of tumor infiltrating lymphocytes from renal cell carcinoma. Int J of Cancer 1993; 53: 941–947.

    CAS  Google Scholar 

  86. Slovin SF, Lackman RD, Ferrone S, et al. Cellular immune response to human sarcoma: cytotoxic T cell clones reactive with autologous sarcomas. J Immunol 1986; 137: 3042–3048.

    PubMed  CAS  Google Scholar 

  87. Somers SS, Guillou AJ. Isolation and expansion of lymphocytes from gastrointestinal tumor tissue. Surgical Oncology 1993; 2:283–291.

    PubMed  CAS  Google Scholar 

  88. Stevens EJ, Jacknin L, Robbins PF, et al. Generation of tumor specific CTLs from melanoma patients by using peripheral blood stimulated with allogeneic melanoma tumor cell lines: Fine specificity and MART-1 melanoma antigen recognition. J Immunol 1995; 154: 762–771.

    PubMed  CAS  Google Scholar 

  89. Topalian SL, Muul LM, Solomon D, Rosenberg SA. Expansion of human tumor infiltrating lymphocytes for use in immunotherapy trials. J Immunol Met 1987; 102: 127–141.

    CAS  Google Scholar 

  90. Topalian SL, Solomon D, Avis FP, et al. Immunotherapy of patients with advanced cancer using tumor-infiltrating lymphocytes and recombinant interleukin-2: A pilot study. Jrn Clin Oncol 1988; 6: 839–853

    CAS  Google Scholar 

  91. Topalian SL, Solomon D, Rosenberg SA. Tumor-specific cytolysis by lymphocytes infiltrating human melanomas. J Immunol 1989; 142: 3714–3732.

    PubMed  CAS  Google Scholar 

  92. Topalian SL, Rivoltini L, Mancini M, et al. Melanoma- specific-CD4+ Tlymphocytes recognize human melanoma antigens processed and presented by epstein-Barr virus transformed B cells. Int J Cancer 1994; 58: 69–79.

    PubMed  CAS  Google Scholar 

  93. Topalian SL, Rivoltini L, Mancini M, et al. Human CD4+ T cells specifically recognize a shared melanoma as- sociated antigen encoded by the tyrosinase gene. Proc Natl Acad Sci 1994; 91: 9461–9465.

    PubMed  CAS  Google Scholar 

  94. Topalian SL, Rivoltini L, Mancini M, et al. Melanoma specific CD4+ T lymphocytes recognize human mela- noma antigens processed and presented by EBV transformed B cells. Int J Cancer 1994; 58: 69–79.

    PubMed  CAS  Google Scholar 

  95. Topalian SL, Gonzales MI, Parkhurst M, et al. Melanoma specific CD4+ T cells recognize nonmutated HLA-DR- restricted tyrosinase epitopes. J Exp Med In Press 1996.

    Google Scholar 

  96. Toso JF, Oei C, Oshidari F, et al. MAGE-1 specific precursor cytotoxic T lymphocytes present among tumor infiltrating lymphocytes from a patient with breast cancer: Characterization and antigen specific activation. Cancer Research 1996; 56: 16–20.

    PubMed  CAS  Google Scholar 

  97. Van derBruggen P, Traversari C, Chomez P, et al. A gene encoding an antigen recognized by cytolytic T lymphocytes on human melanoma. Science 1991; 254: 1643–1647.

    PubMed  Google Scholar 

  98. Vose BM, Gallagher P, Moore M, Schofield PF. Specific and non-specific lymphocyte cytotoxicity in colon carcinoma. Br J Cancer 1981; 44: 846–855.

    PubMed  CAS  Google Scholar 

  99. Wang R-F, Rosenberg SA. Human tumor antigens recognized by T lymphocytes: implications for cancer therapy. J Leukocyte Biol 1996; 60: 296–309.

    PubMed  CAS  Google Scholar 

  100. Wang RF, Robbins PF, Kawakami, et al. Identification of a gene encoding a melanoma antigen recognized by HLA- A31 restricted tumor infiltrating lymphocytes. J Exp Med 1995; 181:799–804.

    PubMed  CAS  Google Scholar 

  101. Weber F, Volgmann T, Menzel J. Tumor infiltrating lymphocytes in malignant brain tumors. Arch Immunol Ther Exp 1993;41:41–44.

    CAS  Google Scholar 

  102. Weiss A.T lymphocyte activation, In: Fundamental Immunology, 3rd Edition. Paul, W. Ed. 1993; 467-504.

    Google Scholar 

  103. Yannelli JR, Stevenson GW, Stevenson HC. Cancer adoptive cellular immunotherapy. In: Principles of Cancer Biotherapy. New York: Marcel Dekker, Inc, 1991: 503–523.

    Google Scholar 

  104. Yannelli JR, Hyatt C, McConnell S, et al. Growth of tumor infiltrating lymphocytes from human solid cancers: Summary of a 5-year experience. Int J Of Cancer 1996; 65: 413–421.

    CAS  Google Scholar 

  105. Yannelli JR, McConnell M, Parker L, et al. Melanoma TIL derived from 4 distinct anatomic sites obtained from a single patient: Comparison of functional reactivity and melanoma antigen recognition. J Immunother 1996; 18: 263–271.

    Google Scholar 

  106. Yannelli JR, Thurman GB, Dickerson SG, et al. An improved method for the generation of human lymphokine activated killer cells. J Immunol Methods 1987; 100: 137–145.

    PubMed  CAS  Google Scholar 

  107. Yannelli JR, Hyatt C, Johnson S, et al. Characterization of human tumor cell lines transduced with the CDNA encoding either tumor necrosis factor alpha (TNF-alpha) or interleukin-2 (IL-2). J Immunol Meth 1993; 161: 77–90.

    CAS  Google Scholar 

  108. Yasamura S, Weidman E, Hirabayashi H, HLA restriction and T cell receptor Vb gene expression of cytotoxic T lymphocytes reactive with human squamous cell carcinoma of the head and neck. Int J of Cancer 1994; 57: 297–305.

    Google Scholar 

  109. Yewdell JW, Bennink JR. Cell biology of antigen processing and presentation to major histocompatibility complex class I molecule restricted T lymphocytes. Adv Immunol 1992; 52: 1–123.

    PubMed  CAS  Google Scholar 

  110. Yewdell JW, Bennink JR. The binary logic of antigen processing and presentation to T cells. Cell 1990; 62: 203–206.

    PubMed  CAS  Google Scholar 

  111. Yoo YK, Heo DS, Hata K, et al. Tumor-infiltrating lymphocytes from human colon carcinomas. Gastroenterology 1990; 98: 259–268.

    PubMed  CAS  Google Scholar 

  112. Yoshino I, Yano T, Murata M, et al. Tumor reactive T-cells accumulate in lung tissue but fail to respond due to tumor cell-derived factor. Cancer Research 1992; 52: 775–781.

    PubMed  CAS  Google Scholar 

  113. Zocchi MR, Ferrarini M, Migone N, Casorati G. T-cell receptor V5 gene usage by tumor reactive y8 T lymphocytes infiltrating human lung cancer . Immunology 1994; 81:234–289.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yannelli, J.R. (1998). Update on the Laboratory Aspects of the Cellular Immunotherapy of Human Cancer. In: Oldham, R.K. (eds) Principles of Cancer Biotherapy. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0029-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0029-5_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6501-6

  • Online ISBN: 978-94-009-0029-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics