Skip to main content

Application of phase transfer catalysis in the chemical industry

  • Chapter
Book cover Handbook of Phase Transfer Catalysis

Abstract

From the standpoint of the process engineer, the advantages of phase transfer catalysis are:

high yield (often >90%);

  • increased reaction rates, sometimes leading to enhanced selectivity;

  • mild reactions conditions, which increase process reliability and flexibility;

  • viability in the presence of water and avoidance of run-away conditions;

  • the ability to use NaOH as a base rather than the more expensive and hazardous organic bases such as sodium methoxide;

  • compatibility with a broad range of solvents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Freedman, H.H. (1986) Pure Appl. Chem.,58,857.

    Article  CAS  Google Scholar 

  2. O’Donnell, M.J. (1993) in Catalytic Asymmetric Synthesis (ed. I. Ojima), VCH, New York, p. 389.

    Google Scholar 

  3. Yadav, G.D. and Sharma, M.M. (1981) Ind. Eng. Chem. Process Des. Dev., 20, 385.

    Article  CAS  Google Scholar 

  4. Sugimato, N., Fugita, T., Shigenmatsu, N. and Ayada, A. (1962) Chem. Pharm. Bull., 10427.

    Google Scholar 

  5. Wang, M. and Yang, H. (1990) Ind. Eng. Chem. Res., 29, 522.

    Article  CAS  Google Scholar 

  6. Wang, T.T. and Huang, T.C. (1990) Chem. Eng. Commun., 92, 139.

    Article  CAS  Google Scholar 

  7. Gove, E.S. (1990) Platinum Met. Rev., 34, 2.

    Google Scholar 

  8. Cassar, L., Foa, M. and Gardano, A. (1976) J. Organomet. Chem., 121(3), C55.

    Article  CAS  Google Scholar 

  9. Yadav, G.D. and Mistry, C.K. (1995) J. Mol. Catal., 102, 67.

    Article  CAS  Google Scholar 

  10. Pradhan, N.C. and Sharma, M.M. (1992) Ind. Eng. Chem. Res., 31, 1610.

    Article  CAS  Google Scholar 

  11. Yang, J and Yu, S. (1994) Huazue Shiji, 16, 316; Chem. Abstr., 122, 213693.

    Google Scholar 

  12. Huang, D. and Lin, S. (1988) Chin. J. Ind. Chem. Eng., 19, 193.

    CAS  Google Scholar 

  13. Makosza, M. and Serafin, B. (1965) Rocz. Chem., 39, 1401.

    CAS  Google Scholar 

  14. Gower, C. (1983) US Pat., 4 387 253; Chem. Abstr., 97, 5961.

    Google Scholar 

  15. Pradhan, N.C. and Sharma, M.M. (1990) Ind. Eng. Chem. Res., 29, 1103.

    Article  CAS  Google Scholar 

  16. Pradhan, N.C. and Sharma, M.M. (1992) Ind. Eng. Chem. Res., 31, 1606.

    Article  CAS  Google Scholar 

  17. Dakka, J., Zoran, A. and Sasson, Y. (1989) Eur. Pat., Appl., EP 300,921; Chem. Abstr., Ill, 23218.

    Google Scholar 

  18. Neumann, R. and Sasson, Y. (1985) J. Chem. Soc., Chem. Commun., 616.

    Google Scholar 

  19. Sasson, Y., Zappi, G.D. and Neumann, R. (1986) J. Org. Chem., 51, 2880.

    Article  CAS  Google Scholar 

  20. Lindblom, L. and Elander, M. (1980) Pharm. Technol., 4(10), 59.

    CAS  Google Scholar 

  21. Jonezyk, A., Ludwikow, M. and Makosza, M. (1979) Org. Prep. Proced. Int., 11, 275.

    Article  Google Scholar 

  22. Yamada, T. and Onishi, M. (1992) Jpn. Kokai Tokkyo Koho, JP 04 18 090; Chem. Abstr., 116,255631.

    Google Scholar 

  23. Gozlan, I., Ladkani, D. Helpern, M. et al. (1984) J. Heterocycl. Chem., 21, 613.

    Article  CAS  Google Scholar 

  24. Suzuki, K., Yoshida, K. and Otaka, H. (1992) Jpn. Kokai Tokkyo Koho, JP 04 164 078; Chem. Abstr., 117,212525.

    Google Scholar 

  25. Hayes, S.F. and Mitchell, M.B. (1993) Chem. Br., 1037.

    Google Scholar 

  26. Fex, H.J., Kristensson, S.K. and Stamvik, A.R. (1978) Ger. Offen.,2 629 657; Chem. Abstr., 86, 189570.

    Google Scholar 

  27. Schwart, S. and Weber, G. (1975) East Ger. Pat., 114 806; Chem. Abstr., 85, 63238.

    Google Scholar 

  28. Koziara, A., Zowadzki, S. and Zwierzak, A. (1979) Synthesis, 521.

    Google Scholar 

  29. Hodkova, J., Vesely, Z. and Trojanek, J. (1990) Czech Pat., CS-266 942; Chem. Abstr., 115, 183648.

    Google Scholar 

  30. Vasndort, H.M. and Geursen, H.J. (1967) Reel. Trav. Chim. Pays-Bas, 86, 520.

    Google Scholar 

  31. Broda, W. and Dehmlow, E.V. (1985) Isr. J. Chem., 26, 219.

    CAS  Google Scholar 

  32. Hermann, C.K.F., Sachdeva, Y.P. and Wolfe, J.F. (1987) Heterocycl. Chem., 24, 1061.

    Article  CAS  Google Scholar 

  33. Starks, C.M., Liotta, C.L. and Halpern, M. (1994) Phase Transfer Catalysis: Fundamentals, Applications and Industrial Perspectives, Chapman & Hall, London, p. 383.

    Google Scholar 

  34. Koch, M. and Magni, A. (1985) US Pat., 4 501 919; Chem. Abstr., 102, 204296.

    Google Scholar 

  35. Heiszmann, J., Bitter, I., Harsanyi, K. and Toke, L. (1987) Synthesis, 738.

    Google Scholar 

  36. Plonka, J.H. and Pews, R.G. (1976) US Pat., 3 974 199; Chem. Abstr., 86, 55053.

    Google Scholar 

  37. Sane, P.V. and Sharma, M.M. (1988) Org. Prep. Proced. Int., 20, 598.

    Article  CAS  Google Scholar 

  38. Maggioni, P. (1980) Ger. Offen., DE 2 703 640; Chem. Abstr., 87, 167715.

    Google Scholar 

  39. Dakka, J. and Sasson, Y. (1987) J. Chem. Soc., Chem. Commun., 1421.

    Google Scholar 

  40. Szabo, G.T., Aranyoso, K., Csiba, M. and Toke, L. (1987) Synthesis, 565.

    Google Scholar 

  41. Jovanovic, S.S., Misic-Vukovic, M.M., Djokovic, D.D. and Bajic, D.S. (1992) J. Mol Catal., 73, 9.

    Article  CAS  Google Scholar 

  42. Ziang, H. and Zongyuan, Y. (1995) Yingyong Huaxue, 12(3), 113.

    Google Scholar 

  43. Schubert, H. and Baessler, K. (1984) US Pat., 4 454 355; Chem. Abstr., 98, 106961.

    Google Scholar 

  44. Yuam, Y., Gao, D. and Jiang, Y. (1992) Synth. Commun., 22,2117.

    Article  Google Scholar 

  45. Folz, G., Papenfus, T. and Schubert, H. (1992) Eur. Pat. Appl, EP 496 370; Chem. Abstr., 117,150684.

    Google Scholar 

  46. Write, C.R. (1987) US Pat., 4 642 399; Chem. Abstr., 106, 138076; Ger. Offen., DE 2 938 939 (1980); Chem. Abstr., 93, 185932.

    Google Scholar 

  47. Hagedorn, F., Fiege, H., Soellner, R. and Helm, R. (1995) Eur. Pat, Appl, EP 658 544; Chem. Abstr., 123, 82939.

    Google Scholar 

  48. Hiroshi, S., Shuji, O. and R’yuichi, M. (1993) Jpn. Kokai Tokkyo Koho, JP07 126 198; Chem. Abstr., 123, 169226.

    Google Scholar 

  49. Hampl, F., Smid, I., Votava, V. et al. (1990) Czech. Pat., CS-265 360; Chem. Abstr., 114, 20680.

    Google Scholar 

  50. Angeletti, E., Tundo, P., Venturello, P. and Trotta, F. (1984) Br. Polym. J., 16, 219.

    CAS  Google Scholar 

  51. Liu, B.L., Jin, Y.T., Lin, Z.H. et al. (1985) Int. J. Appl Radiat. Isot., 36, 561.

    Article  CAS  Google Scholar 

  52. Aragao dos Santos, H., Espindola, L., Ferreise, V.F. and Nakamura, T. (1991) Braz. Pat., 9 102 022; Chem. Abstr., 118, 134747.

    Google Scholar 

  53. Ranganekar, D.W. and Lokhande, S.B. (1986) Indian J. Chem. B, 25,485.

    Google Scholar 

  54. Ranganekar, D.W. and Shenoy, G.R. (1988) Dyes Pigments, 10, 69.

    Article  Google Scholar 

  55. Ranganekar, D.W. and Shenoy, G.R. (1988) Dyes Pigments, 10, 165.

    Google Scholar 

  56. Hattori, M., Taguma, A., Morimitsu, T. and Takeshite, A. (1984) Eur. Pat. Appl, EP 105 762; Chem. Abstr., 101, 173037.

    Google Scholar 

  57. Stern, M.K. and Cheng, B.K. (1993) J. Org. Chem., 58, 6883.

    Article  CAS  Google Scholar 

  58. Mauran, L., (1983) US Pat., 4 418 232; Chem. Abstr., 100, 52179.

    Google Scholar 

  59. Reed, D.J. and Snedecor, T.G., Jr (1993) PCTInt. Pat. Appl, WO 95 05 352; Chem. Abstr., 123,199636.

    Google Scholar 

  60. Nanba, H., Abe, K. and Saito, M. (1988) Jpn. Kokai Tokkyo Koho, JP 63 196 550; Chem. Abstr., 110, 23361.

    Google Scholar 

  61. Krishna Kumar, V.K. and Sharma, M.M. (1983) Synthesis, 558.

    Google Scholar 

  62. Glasser, W.G., Olivera, W., Kelley, S.S. and Nich, L.S. (1990) US Pat., 4 918 167; Chem. Abstr., 113, 99698.

    Google Scholar 

  63. Wang, M. and Yang, H. (1990) J. Mol. Catal., 57, 271.

    Article  CAS  Google Scholar 

  64. General Electric (1985) Jpn. Kokai Tokkyo Koho, JP 60 188 368; Chem. Abstr., 104, 130428.

    Google Scholar 

  65. Qin, D. and Wang, G. (1990) Faming Shuanli Shenqing Gongkai Shuomingshu, CN 1 039413; Chem. Abstr., 113, 230791.

    Google Scholar 

  66. Kochler, M., Roemer, M. and Herz, C. (1986) Ger. Offen., DE 3 512 541; Chem. Abstr., 106, 32575.

    Google Scholar 

  67. Osborn, M.E. (1995) Speciality Chem., 215.

    Google Scholar 

  68. Zupanicic, B.G. and Sopcic, M. (1982) Synthesis, 942.

    Google Scholar 

  69. Dow Chemical (1977) Neth. Pat. Appl, 75 09 2021; Chem. Abstr., 88, 22642.

    Google Scholar 

  70. Gore, S.T., Goel, R.N. and Sobti, R.R. (1980) Indian Pat., 148 068; Chem. Abstr., 97, 97854.

    Google Scholar 

  71. Garganu, R., Perez, D. and Williams, D. (1982) US Pat., 4 326 059; Chem. Abstr., 92, 163900.

    Google Scholar 

  72. Kroposki, L.M., Yoshimine, M. and Freedman, H.H. (1975) US Pat., 3 917 621; Chem. Abstr., 84, 121436.

    Google Scholar 

  73. Freedman, H.H. (1976) US Pat., 3 969 360; Chem. Abstr., 86, 53174.

    Google Scholar 

  74. Botar, S., Szekely, I., Bertok, B. et al. (1992) PCT Int. Appl, WO 92 02 492; Chem. Abstr., 116,214743.

    Google Scholar 

  75. Sheldon, R.A., Been, P., Wood, D.A. and Mason, R.F. (1977) Ger. Offen., 2 708 590; Chem. Abstr., 88, 6563.

    Google Scholar 

  76. Henneke, K., Diehn, H. and Wedemeyer, K. (1986) US Pat., 4 594 467; Chem. Abstr., 105, 42451.

    Google Scholar 

  77. Koenig, K.E. and Weber, W.P. (1974) Tetrahedron Lett., 2275.

    Google Scholar 

  78. Lantzsch, R. and Krall, H. (1988) Ger. Offen., DE 3 626 411, Chem. Abstr., 109, 54497.

    Google Scholar 

  79. Wei, T. and Chen, J. (1994) Huaxue Shijie, 35, 538; Chem. Abstr., 123, 202861.

    Google Scholar 

  80. Merz, A. (1974) Synthesis, 124.

    Google Scholar 

  81. Brokke, M.E. and Magee, W.L. (1985) Eur. Pat. Appl., EP 140 454; Chem. Abstr., 103, 143568.

    Google Scholar 

  82. Mark, H.W. (1988) Eur. Pat. Appl, 268 261; Chem. Abstr., 109, 230275.

    Google Scholar 

  83. Suzuki, H., Kawashima, M., Kawamura, Y. and Ogura, T. (1986) Jpn. Kokai Tokkyo Koho, JP 62 294 652; Chem. Abstr., 109, 92460.

    Google Scholar 

  84. Imamura, K., Miura, H., Uno, Y. and Watanabe, E. (1990) Jpn. Kokai Tokkyo Koho, JP 02 304 061; Chem. Abstr., 114, 206583.

    Google Scholar 

  85. Kumala, K., Ankner, K., Rintala, L. et al. (1993) PCT Int. Pat. Appl, WO 95 07 254; Chem. Abstr., 122, 290330.

    Google Scholar 

  86. Landini, D., Montanari, F. and Rolla, F. (1974) Synthesis, 1, 34.

    Google Scholar 

  87. Shinozaki, H., Imaizumi, M. and Tajima, M. (1983) Chem. Lett., 929.

    Google Scholar 

  88. Krbechek, L.O. (1995) PCT Int. Pat. Appl., WO 95 01 957; Chem. Abstr., 122, 213748.

    Google Scholar 

  89. Weissien, B., Andreasson, E. and Holmberg, K. (1989) J. Am. Oil Chem. Soc., 66,1107.

    Article  Google Scholar 

  90. Quinn, R. (1995) Chem. Eng. News, 17 April, 26.

    Google Scholar 

  91. Jablokoff, H., Lorch, B and Engelmann, H. (1982) East Ger. Pat., DD 154 813; Chem. Abstr., 98,4274.

    Google Scholar 

  92. Dehmlow, E.V., Raths, H.C. and Soufi, J. (1988) J. Chem. Res., 384.

    Google Scholar 

  93. Rigterink, R.H. and Kenaga, E.E. (1966) J. Agric. Food. Chem., 14, 304.

    Article  Google Scholar 

  94. Sarkar, A., Dey, P.K. and Datta, K. (1986) Indian J. Chem. B, 25, 656.

    Google Scholar 

  95. Kumala, K., Ankner, K., Rintala, L. et al. (1995) PCT Int. Pat. Appl, WO 95 07 254; Chem. Abstr., 122, 290330.

    Google Scholar 

  96. Kumala, K., Anker, K. and Rintala, L. (1995) PCT Int. Pat. Appl, WO 95 00 464; Chem. Abstr., 122, 132576.

    Google Scholar 

  97. Bram, B.G., Sansoulet, J., Golons, H. and Micgue, M. (1988) Synth. Commun., 18, 376.

    Google Scholar 

  98. Hales, B.F., Hachey, C. and Robaire, B. (1980) Biochem. J., 189, 135.

    CAS  Google Scholar 

  99. Fedorynski, M., Wojciechowski, K., Matacz, Z. and Makosza, M. (1978) J. Org. Chem., 43,4682.

    Article  CAS  Google Scholar 

  100. Dehmlow, E.V. and Kinning, J. (1995) J. Prakt. ChemJChem.-Z, 337, 153.

    Google Scholar 

  101. Lu, W., Yan, C., Ding, Y. and Gu, H. (1995) Huzxue Shiji, 17, 110,120; Chem. Abstr., 123, 198244.

    Google Scholar 

  102. Branko, J. (1988) Tetrahedron, 44, 6677.

    Article  Google Scholar 

  103. Dehmlow, E.V. and Naranjo, S.B. (1981)J Chem. Res., 142.

    Google Scholar 

  104. Dehmlow, E.V. and Naranjo, S.B. (1981)J. Chem. Res., 143.

    Google Scholar 

  105. Sasson, Y. and Yonovich, M. (1979) Tetrahedron Lett., 39, 3753.

    Article  Google Scholar 

  106. Kajigaeshi, S., Asano, K., Fujiaki, A. etal. (1989) Chem. Lett., 463.

    Google Scholar 

  107. Kajigaeshi, S., Murakawa, K. Asano, K. etal (1989)J. Chem. Soc., Perkin Trans. 1, 1702.

    Google Scholar 

  108. Rane, D.S. and Sharma, M.M. (1994) J Chem. Technol. Biotechnol., 59, 271.

    Article  CAS  Google Scholar 

  109. Zaidman, B., Sasson, Y. and Neumann, R. (1985) Ind. Eng. Chem. Prod Res. Dev., 24, 390.

    Article  CAS  Google Scholar 

  110. Lin, C.L. and Pinnavaia, T.J. (1991) Chem. Mater., 3, 213.

    Article  CAS  Google Scholar 

  111. Chaudhary, B.M., Rao, Y.V.S. and Prasad, B.P. (1991) Clays Clay Miner, 39, 329.

    Article  Google Scholar 

  112. Boyd, G.E. and Larson, Q.V. (1967) J. Am. Chem. Soc., 89, 6038.

    Article  CAS  Google Scholar 

  113. Pahari, P. (1991) PhD Thesis, University of Bombay.

    Google Scholar 

  114. Ledon, H. (1974) Synthesis, 347.

    Google Scholar 

  115. Bram, G., Loupy, A. and Sansoulet, J. (1985) Isr. J. Chem., 26, 291; Chem. Abstr., 105, 96660.

    Google Scholar 

  116. Sjoberg, K. (1980) Aldrichim. Acta, 13, 55.

    Google Scholar 

  117. Hampl, F., Hajek, J. Votava, V. et al. (1989) Czech. Pat., CS-265 560; Chem. Abstr., 114, 207024.

    Google Scholar 

  118. Berris, B.C. (1991) US Pat., 5 030 757; Chem. Abstr., 115, 114015.

    Google Scholar 

  119. Maurin, L. (1983) US Pat., 4 418 232; Chem. Abstr., 100, 52179.

    Google Scholar 

  120. Taracon, E.M. (1992) Span. Pat., ES-1 023 606; Chem. Abstr., 117,48107.

    Google Scholar 

  121. Brunelle, D. (1982) US Pat., 4 363 905; Chem. Abstr., 98, 72918.

    Google Scholar 

  122. Nanba, H., Takahashi, N., Abe, K. and Saito, M. (1988) Jpn. Kokai Tokkyo Koho, JP 63 196 549; Chem. Abstr., 110, 23360.

    Google Scholar 

  123. Liotta, C.L., Starks, C.M. and Halpern, M.E. (1994) Phase Transfer Catalysis: Fundamentals, applications and industrial perspectives, Chapman & Hall, p. 26.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Chapman & Hall

About this chapter

Cite this chapter

Sharma, M. (1997). Application of phase transfer catalysis in the chemical industry. In: Sasson, Y., Neumann, R. (eds) Handbook of Phase Transfer Catalysis. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0023-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0023-3_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7514-0258-2

  • Online ISBN: 978-94-009-0023-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics