Skip to main content

Tree Island Ecosystems of the World

  • Chapter
Tree Islands of the Everglades

Abstract

Tree islands are defined as patches of woody vegetation within a freshwater wetland matrix dominated by non-woody species. Ecosystems with tree islands as a prominent landscape feature are found throughout the world, suggesting that they arise from a common mechanism of formation. This chapter considers the ecological processes that foster the development and maintenance of tree islands and compares tree islands found in the Florida Everglades to other tree island ecosystems. From the wide diversity of tree island ecosystems two common characteristics emerged: 1) a general mechanism of island formation and 2) vegetation communities that are a subset of the surrounding lowland forests. All tree islands form through a combination of directional, moving waters and biological activity. Islands are initiated with a physical-chemical point of formation such as a bedrock topographic high or low or a minerotrophic groundwater outflow. Biotic factors, usually plants, respond to that point of formation by raising the surface elevation of the island above the surrounding water level through deposition of plant litter. Plants also bind soil substrata or increase island sedimentation by stabilizing the point of formation. Other biotic factors of tree island formation include termites and seed dispersal by animals, primarily birds. Review of the literature also found that the vegetation on tree islands is a subset of the surrounding regional forest community. No endemics or rare plant species are reported to grow on tree islands. Hydrology is the primary factor affecting tree island vegetation in all systems and controls community composition, species richness, and vegetation zonation. Hydrology also controls succession and ultimately is linked to island development. Secondary succession is relatedto the ecosystem disturbance regime. Fire, flooding, and droughtare disturbances common to all tree island ecosystems. All tree island ecosystems form in extraordinarily flat landscapes. If overlandwatershave a low velocityand climatic conditions support peat formation the result is a peatland tree island ecosystem, of which the Florida Everglades is an example. Highervelocity water flows, such as in or alongrivers, result in non-peatland tree island ecosystems. Non-peatland tree islands are subject to abiotic factors common to riverine systems: high water velocity, rapid changes in hydrology, and alluvial geologic forces. These abiotic factors may have a greater influence on island formation than biotic factors, especiallyin the early stages of island development. Peatland tree island systemsare just as dynamic, but biotic factors may dominate the formation of these islands.Tree islands have long distance ecological links that extend far beyond the apparent boundaries of the island, requiring an expansive wetland complex to support them. Human shave affected nearly all tree island ecosystems through physical restructuring, discharge of wastes, or the introduction of exotic species. Although tree islands appear to be resilient, their alteration and destruction in the Everglades clearly illustrates that they can be destroyed or greatly modified by human activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alho, C.J.R., Lacher, Jr, T.E. and Gonsalves, H.C. 1988. Environmental degradation in the Pantanal ecosystem. Bioscience, 38: 164—171.

    Article  Google Scholar 

  • Auble, G.T. 1984. Dissolved cation concentrations in Okefenokee Swamp surface water: spatial and temporal variation. In: Cohen, A.D., Casagrande, D.J., Andrejko, M.J. and Best G.R. eds. The Okefenokee Swamp: Its Natural History, Geology, and Geochemistry, Los Alamos, NM: Wetland Surveys.

    Google Scholar 

  • Back, W. 1985. Part III. Hydrogeology of the Yucatán. In: Ward, W.C., Weidie, E. and Back, W. eds. Gtology and Hydrogeology of the Yucatán and Quaternary Geology of Northeastern Yucatán Peninsula. New Orleans, LA: New Orleans Geological Society.

    Google Scholar 

  • Barnes, W.J. 1991. Tree populations on the islands of the lower Chippewa River inWisconsin. Bulletin of the Torrey Botanical Club, 188: 424–431.

    Article  Google Scholar 

  • Barnes, W.J. 1999. The rapid growth of a population of reed canarygrass (Phalarisarundinacea L.) and its impact on some riverbottom herbs. Journal of the Torrey Botanical Society, 126: 133–138.

    Article  Google Scholar 

  • Barrera, A. 1982. Los petenes del noroeste de Yucatán: su exploración ecológica enperspectiva. Biotica, 7: 163–169.

    Google Scholar 

  • Batten, A.R. and Murray, D.F. 1982. A literature survey of the wetland vegetation of Alaska. Technical Report Y-82-2, Vicksburg, MS: U.S. Army Corps of Engineers, Waterways Experiment Station.

    Google Scholar 

  • Bliss, L.C. and Cantlon, J.E. 1957. Succession on river alluvium in northern Alaska. American Midland Naturalist, 58: 452–469

    Article  Google Scholar 

  • Bosserman, R.W. 1984. Diurnal variation of water chemistry parameters in Okefenokee Swamp. In: Cohen, A.D., Casa Grande, D.J., Andrejko, M.J. and Best, G.R. eds. The Okefenokee Swamp: Its Natural History, Geology, and Geochemistry. Los Alamos, NM: Wetland Surveys.

    Google Scholar 

  • Botch, M.S. and Masing, V.V. 1983. Mire ecosystems in the U.S.S.R. In: Gore, A.J.P. ed. Ecosystems of the World 4B. Mires: Swamp, Bog, Fen and Moor. Regional Studies. Amsterdam: Elsevier Scientific Publishing Co.

    Google Scholar 

  • Brandof, K.L. 1992. Ditching of Red Lake Peatland during the Homestead Era. In, H.E. Wright, Jr., B.A. Coffin and Aaseng N.E. eds. The Patterned Peatlands of Minnesota. Minneapolis, MN: University of Minnesota Press.

    Google Scholar 

  • Campbell, E.O. 1983. Mires of Australasia. In: Gore, A.J.P. ed. Ecosystems of the World 4B. Mires: Swamp, Bog, Fen and Moor. Regional Studies. Amsterdam: Elsevier Scientific Publishing Co.,.

    Google Scholar 

  • Castellanos, E.M., Figueroa, M.E. and Davy, A.J. 1994. Nucleation and facilitation insaltmarsh succession: interactions between Spartina maritima and Arthrocnemum perenne. Journal of Ecology, 82: 239–248.

    Article  Google Scholar 

  • Cypert, E. 1961. The effects of fires in the Okefenokee Swamp in 1954 and 1955. TheAmerican Midland Naturalist, 65: 485–503.

    Google Scholar 

  • Cypert, E. 1972. The origin of houses in the Okefenokee prairies. The American Midland Naturalist, 87: 448–458.

    Article  Google Scholar 

  • Davis, J.H. 1943. The Natural Features of Southern Florida. Florida Geological Bulletin#25.Tallahassee, FL: Florida Department of Conservation, Florida Geological Survey.

    Google Scholar 

  • Davis, S.M. 1994. Phosphorus inputs and vegetation sensitivity in the Everglades. In: Davis, S.M. and Ogden, J.C. eds. Everglades. The Ecosystem and Its Restoration, Delray Beach, FL: St. Lucie Press.

    Google Scholar 

  • Dennis, W. M. and Batson, W.T. 1974. The floating log and stump communities in the Santee Swamp of South Carolina. Castanea, 39: 166–170.

    Google Scholar 

  • Diniz de Araujo Neto, M., Furley, P.A., Haridasan, M. and Johnson, C.E. 1986. Themurundus of the cerrado region of central Brazil. Journal of Tropical Ecology, 2: 17–35.

    Article  Google Scholar 

  • Douglas, D.A. 1994. Seed germination, seedling demography, and growth of Salixsetchelliana on glacial river gravel bars in Alaska. Canadian Journal of Botany, 73:673–679.

    Google Scholar 

  • Drury, W.H., Jr. 1956. Bog flats and physiographic processes in the upper Kuskokwim Riverregion, Alaska. Contributions Gray Herbarium, 178, Boston MA: Harvard University. 130 pp.

    Google Scholar 

  • Duever, M.J., Meeder, J.F., Meeder, L.C. and McCollom, J.M. 1994. The climate of south Florida and its role in shaping the Everglades ecosystem. In: Davis, S.M. and Ogden, J.C. eds. Everglades. The Ecosystem and Its Restoration, Delray Beach, FL: St. Lucie Press.

    Google Scholar 

  • Duever, M.J. and Riopelle, L.A. 1983. Successional sequences and rates on tree islands in the Okefenokee Swamp. The American Midland Naturalist, 110: 186–193.

    Article  Google Scholar 

  • Durán, G.R. 1987. Descripción y analisis de la estructura y composicion de la vegetación de los petenes del noroeste de Campeche, Mexico. Biotica, 12: 181–198.

    Google Scholar 

  • Ellenbroek, G. A. 1987. Ecology and Productivity of an African Wetland System: The Kafue Flats, Zambia. Dordrecht, Netherlands: Dr W. Junk Publishers, 267 pp.

    Google Scholar 

  • Ellery, K., Ellery, W.N., Rogers, K.H. and Walker, B.H. 1990. Formation, colonization and fate of floating sudds in the Maunachira river system of the Okavango Delta, Botswana. Aquatic Botany, 38: 315–329.

    Article  Google Scholar 

  • Farjon, A. and Bogaers, P. 1985. Vegetation zonation and primary succession along the Porcupine River in interior Alaska. Phytocoenologia, 13: 465–504.

    Google Scholar 

  • Federal Interagency Committee for Wetland Delineation. 1989. Federal manual for identifying and delineating jurisdictional wetlands. Cooperative technical publication. Washington, DC: U.S. Army Corps of Engineers, U.S. Environmental Protection Agency, U.S. Fish and Wildlife Service, and USDA Soil Conservation Service, 76 pp. plus appendices.

    Google Scholar 

  • Foldats, E. and Rutkis, E. 1975. Ecological studies of chaparro (Curatella americana L.) and manteco (Byrsonima crassifolia H.B.K.) in Venezuela. Journal of Biogeography, 2:159–178.

    Article  Google Scholar 

  • Foster, D.R. and Fritz, S.C. 1987. Mire development, pool formation and landscape processes on patterned fens in Dalarna, central Sweden. Journal of Ecology, 75: 409–437.

    Article  Google Scholar 

  • Foster, D.R., King, G.A., Glaser, P.H. and Wright, H.E. 1983. Origin of string patterns in northern peatlands. Nature, 306: 256–258.

    Article  Google Scholar 

  • Foster, D.R., Wright, Jr., H.E., Thelaus, M. and King, G.A. 1988. Bog development and landform dynamics in central Sweden and south-eastern Labrador, Canada. Journal of Ecology, 76: 1164–1185.

    Article  Google Scholar 

  • Germain, G.J. 1998. Surface water quality monitoring network. Technical Memorandum 356, West Palm Beach, FL: South Florida Water Management District.

    Google Scholar 

  • Germanoski, D. and Schumm, S.A. 1993. Changes in braided river morphology resulting from aggradation and degradation. Journal of Geology, 101: 451–466.

    Article  Google Scholar 

  • Glaser, P.H. 1987a. The Ecology of Patterned Boreal Peatlands of Northern Minnesota: A Community Profile. Fish and Wildlife Service Biological Report, 85 (7.14). 98 pp.

    Google Scholar 

  • Glaser, P.H. 1987b. The development of streamlined bog islands in the continental interior of North America. Arctic and Alpine Research, 19: 402–413.

    Article  Google Scholar 

  • Glaser, P.H. 1992a. Peat landforms. In: Wright, H.E., Jr., Coffin, B.A. and Aaseng, N.E. eds. The Patterned Peatlands of Minnesota. Minneapolis, MN: University of Minnesota Press, pp. 3–14.

    Google Scholar 

  • Glaser, P.H. 1992b. Vegetation and water chemistry. In: Wright, H.E., Jr., Coffin, B.A. and Aaseng, N.E. eds. The Patterned Peatlands of Minnesota. Minneapolis, MN: University of Minnesota Press, pp. 15–26.

    Google Scholar 

  • Glaser, P.H. 1992c. Ecological development of patterned peatlands In: Wright, H.E., Jr., Coffin, B.A. and Aaseng, N.E. eds. The Patterned Peatlands of Minnesota. Minneapolis, MN: University of Minnesota Press, pp. 27–42.

    Google Scholar 

  • Glaser, P.H., Wheeler, G.A., Gorham, E. and Wright Jr., H.E. 1981. The patterned mires of the Red Lake Peatland, northern Minnesota: vegetation, water chemistry, and landforms. Journal of Ecology, 69: 575–599.

    Article  CAS  Google Scholar 

  • Glasser, J.E. 1985. Successional trends on tree islands in the Okefenokee Swamp as determined by interspecific association analysis. The American Midland Naturalist, 113: 287–293.

    Article  Google Scholar 

  • Gleason, P.J. and Stone, P. 1994. Age, origin, and landscape evolution of the Everglades peatland. In: Davis, S.M. and Ogden, J.C. eds. Everglades. The Ecosystem and Its Restoration, Delray Beach, FL: St. Lucie Press.

    Google Scholar 

  • Gleason, P.J., Cohen, A.D., Brooks, H.K., Stone, P.S., Goodwick, R., Smith, W.G. and Spackman, Jr., W. 1974. The environmental significance of Holocene sediments from the Everglades and saline tidal plain. In: Gleason, P.J. ed. Environments of South Florida: Present and Past. Miami, FL: Miami Geological Society Memoir 2:287–341.

    Google Scholar 

  • Gleason, P.J., Piepgras, D., Stone, P.A., and Stipp, J. 1980. Radiometric evidence for involvement of floating islands in the formation of Florida Everglades tree islands. Geology, 8: 195–199.

    Article  Google Scholar 

  • Griffin, K.O. 1977. Paleoecological aspects of the Red Lake Peatland, northern Minnesota. Canadian Journal of Botany, 55: 172–192.

    Article  Google Scholar 

  • Gunderson, L.H. 1994. Vegetation of the Everglades: Determinants of community. In: Davis, S.M. and Ogden, J.C. eds. Everglades. The Ecosystem and Its Restoration, Delray Beach, FL: St. Lucie Press.

    Google Scholar 

  • Gunderson, L.H., Stenberg, J.R. and Herndon, A.K. 1988. Tolerance of five hardwood species to flooding regime. In: Wilcox, D.A. ed. Interdisciplinary Approaches to Freshwater Wetlands Research. East Lansing, MI: Michigan State University Press.

    Google Scholar 

  • Gunderson, L.H. and Snyder, J.R. 1994. Fire patterns in the southern Everglades. In: Davis, S.M. and Ogden, J.C. eds. Everglades. The Ecosystem and Its Restoration, Delray Beach, FL: St. Lucie Press.

    Google Scholar 

  • Haddock, J.D. and Todd, R.L. 1984. Nitrogen fixation on floating peat masses of the Okefenokee Swamp. In: Cohen, A.D., Casagrande, D.J., Andrejko, M.J. and Best G.R. eds. The Okefenokee Swamp: Its Natural History, Geology, and Geochemistry, Los Alamos, NM: Wetland Surveys.

    Google Scholar 

  • Heckman, C.W. 1994. The seasonal succession of biotic communities in wetlands of the tropical wet-and-dry climatic zone: I. Physical and chemical causes and biological effects in the Pantanal of Mato Grosso, Brazil. I.t. Revue ges. Hydrobiol., 79: 397–421.

    Article  CAS  Google Scholar 

  • Heinselman, M.L. 1963. Forest sites, bog processes, and peatland types in the Glacial Lake Agassiz Region, Minnesota. Ecological Monographs, 33: 327–374.

    Article  Google Scholar 

  • Heinselman, M.L. 1965. String bogs and other patterned organic terrain near Seney, Upper Michigan. Ecology, 46: 185–188.

    Article  Google Scholar 

  • Heinselman, M.L. 1970. Landscape evolution, peatland types, and the environment in the Lake Agassiz peatlands natural area, Minnesota. Ecological Monographs, 40: 235–261.

    Article  Google Scholar 

  • Heisler, I. L., Towles, D.T., Brandt, L. A. and Pace, R.T. 2003. Tree island vegetation and water management in the central Everglades. In: Sklar, F. and van der Valk, A. eds. Tree Islands of the Everglades. Boston, MA: Kluwer Academic Publishers, chapter 9.

    Google Scholar 

  • Herrera-Silveira, J.A., Comín, F.A., López, S. and Sánchez, I. 1998. Limnologicalcharacterization of aquatic ecosystems in Yucatán Peninsula (SE Mexico). Verh. Internat. Verein. Limnol., 26: 1348–1351.

    CAS  Google Scholar 

  • Hill, R. and Webb, G. 1982. Floating grass mats of the Northern Territory floodplains-an endangered habitat? Wetlands, 2: 45-50 (Publication of the Coast and Wetlands Society, Sydney South, New South Wales, Australia).

    Google Scholar 

  • Hogg, E.H. and Wein, R.W. 1987. Growth dynamics of floating Typha mats: seasonal translocation and internal deposition of organic material. Oikos, 50: 197–205.

    Article  Google Scholar 

  • Hogg, E.H. and Wein, R.W. 1988a. Seasonal change in gas content and buoyancy of floating Typha mats. Journal of Ecology 76: 1055–1068.

    Article  CAS  Google Scholar 

  • Hogg, E.H. and Wein, R.W. 1988b. The contribution of Typha components to floating mat buoyancy. Ecology, 69: 1025–1031.

    Article  Google Scholar 

  • Hosner, J.F. and Minckler L.S. 1963. Bottomland hardwood forests of southern Illinois-regeneration and succession. Ecology, 44: 29–41.

    Article  Google Scholar 

  • Huff, C.R. 1992. Riparian vegetation recovery patterns following stream channelization: a geomorphic perspective. Ecology, 73: 1209–1226.

    Article  Google Scholar 

  • Huffman, R.T. and Lonard, R.I. 1983. Successional patterns on floating vegetation mats in a southwestern Arkansas bald cypress swamp. Castanea, 48: 73–78.

    Google Scholar 

  • Hunt, K.W. 1943. Floating mats on a southeastern coastal plain reservoir. Bulletin of the Torrey Botanical Club, 70: 481–488.

    Article  Google Scholar 

  • Hyatt, R.A. and Brook, G.A. 1984. Ground water flow in the Okefenokee Swamp and hydrologic and nutrient budgets for the period August, 1981 through July, 1982. In: Cohen, A.D., Casagrande, D.J., Andrejko, M.J. and Best G.R. eds. The Okefenokee Swamp: Its Natural History, Geology, and Geochemistry, Los Alamos, NM: Wetland Surveys.

    Google Scholar 

  • Ivanov, K.E. 1981. Water Movement of Mirelands. Translated from the Russian, Vodoobmen v botonykh landshaftask (1975), by Thomson, A. and Ingram, H.A.P. London, UK: Academic Press

    Google Scholar 

  • Izlar, R.L. 1984a. A history of Okefenokee logging operations: a bourbon and branch water success story. In: Cohen, A.D., Casagrande, D.J., Andrejko, M.J. and Best G.R. eds. The Okefenokee Swamp: Its Natural History, Geology, and Geochemistry, Los Alamos, NM: Wetland Surveys.

    Google Scholar 

  • Izlar, R.L. 1984b. Some comments on fire and climate in the Okefenokee Swamp-Marsh complex. In: Cohen, A.D., Casagrande, D.J., Andrejko, M.J. and Best G.R. eds. The Okefenokee Swamp: Its Natural History, Geology, and Geochemistry, Los Alamos, NM: Wetland Surveys.

    Google Scholar 

  • Janssens, J.A., Hansen, B.C.S., Glaser, P.H., and Whitlock, C. 1992. Development of a Raised-Bog Complex. In: Wright, H.E., Jr., Coffin, B.A. and Aaseng, N.E. eds. The Patterned Peatlands of Minnesota. Minneapolis, MN: University of Minnesota Press, pp. 189–221.

    Google Scholar 

  • Johnson, L.C. and Damman, A.W.H. 1991. Species-controlled Sphagnum decay on a South Swedish raised bog. Oikos, 61: 234–242.

    Article  Google Scholar 

  • Johnson, W.C. 1994. Woodland expansion in the Platte River Nebraska: patterns and causes. Ecological Monographs, 64: 45–84.

    Article  Google Scholar 

  • Junk, W.J. 1983. Ecology of swamps on the middle Amazon. In: Gore, A.J.P. ed. Ecosystems of the World 4B. Mires: Swamp, Bog, Fen and Moor. Regional Studies. Amsterdam: Elsevier Scientific Publishing Co.

    Google Scholar 

  • Junk, W.J. and Piedade, M.T.F. 1997. Plant life in the floodplain with special reference to herbaceous plants. In: Junk, W.J. ed. The Central Amazon Floodplain. Ecological Studies, Vol. 126. Berlin: Springer-Verlag.

    Google Scholar 

  • Kaul, V. and Zutshi, D.P. 1966. Some ecological considerations of floating islands in Srinagar lakes. Proceedings of the National Academy of Sciences, India, Section B, Vol. XXXVI, Part 111: 273–280.

    CAS  Google Scholar 

  • Keirstead, M.E. 1992. Management of Minnesota’s peatlands and their economic uses. In: Wright, H.E., Jr., Coffin, B.A. and Aaseng, N.E. eds. The Patterned Peatlands of Minnesota. Minneapolis, MN: University of Minnesota Press.

    Google Scholar 

  • King, G.M., Berman, T. and Wiehe, W.J. 1981. Methane formation in the acidic peats of Okefenokee Swamp, Georgia. The American Midland Naturalist, 105: 386–389.

    Article  CAS  Google Scholar 

  • Koch, M.S. and Reddy, K.R. 1992. Distribution of soil and plant nutrients along a trophic gradient in the Florida Everglades. Soil Science Society of America Journal, 56:1492–1499.

    Article  Google Scholar 

  • Komar, P.D. 1983. Shapes of streamlined islands on Earth and Mars: Experiments and analyses of the minimum-drag form. Geology, 11: 651–654.

    Article  Google Scholar 

  • Komar, P.D. 1984. The lemniscate loop-comparisons with the shapes of streamlined landforms. Journal of Geology, 92: 133–145.

    Article  Google Scholar 

  • Krasny, M.E., Vogt, K.A. and Zasada, J.C. 1988. Establishment of four Salicaceae species on river bars in interior Alaska. Holarctic Ecology, 11: 210–219.

    Google Scholar 

  • Kremer, P.R. and Spackman, W. 1981. The paleoecological evidence for environmental changes in “neopaleobotanical” sediments of south Florida. In: Romans, R.C. ed. Geobotany II. New York: Plenum Press.

    Google Scholar 

  • Krusi, B.O. and Wein, R.W. 1988. Experimental studies on the resiliency of floating Typha mats in a freshwater marsh. Journal of Ecology, 76: 60–72.

    Article  Google Scholar 

  • Light, S.S. and Dineen, J.W. 1994. Water control in the Everglades: a historical perspective. In: Davis, S.M. and Ogden, J.C. eds. Everglades. The Ecosystem and Its Restoration, Delray Beach, FL: St. Lucie Press.

    Google Scholar 

  • Lin, S., Lane, J. and Marban, J. 1984. Meteorological and Hydrological Analysis of the 1980-1982 Drought. Technical Publication 84-7. West Palm Beach, FL: South Florida Water Management District.

    Google Scholar 

  • Lopez-Portillo, J., Ezcurra, E. and Maass, J.M. 1989. Los petenes de Sian Ka’an, Quintana Roo y su relacion con gradientes de presion hidrica. Acta Botänica Mexicana, 5: 19–29.

    Google Scholar 

  • Loveless, C.M. 1959. A study of the vegetation of the Florida Everglades. Ecology, 40: 1–9.

    Article  Google Scholar 

  • Luken, J.O. and Fonda, R.W. 1983. Nitrogen accumulation in a chronosequence of red alder communities along the Hoh River, Olympic National Park, Washington. Canadian Journal of Forestry, 13: 1228–1237.

    Article  CAS  Google Scholar 

  • Malanson, G.P. and Butler, D.R. 1990. Woody debris, sediment and riparian vegetation of a subalpine river, Montana, U.S.A. Arctic and Alpine Research, 22: 183–194.

    Article  Google Scholar 

  • Mathews, A.G.A. 1977. Studies on termites from the Mato Grosso State, Brazil. Rio de Janeiro: Academia Brasileira de Ciencias.

    Google Scholar 

  • McBride, J.R. and Strahan, J. 1984. Establishment and survival of woody riparian species on gravel bars of an intermittent stream. American Midland Naturalist, 112: 235–245.

    Article  Google Scholar 

  • McPherson, B.F. 1973. Vegetation in relation to water depth in Conservation Area 3, Florida. United States Geological Survey Florida Open File Report No. 73025.

    Google Scholar 

  • Moore, P.D. and Bellamy, D.J. 1974. Peatlands. New York: Springer-Verlag Inc.

    Google Scholar 

  • Morris, M., Eveleigh, D.E., Riggs, S.C., and Tiffney Jr., W.N. 1974. Nitrogen fixation in the Bayberry (Myrica pensylvanica) and its role in coastal succession. American Journal of Botany, 61:867–870

    Article  Google Scholar 

  • Newman, S., Schuette, J., Grace, J.B., Rutchey, K.R., Fontaine, T.D., Reddy, K.R. and Pietrucha, M. 1998. Factors influencing cattail abundance in the northern Everglades. Aquatic Botany, 60:265–280

    Article  Google Scholar 

  • Oliveira-Filho, A.T. 1992a. Floodplain ‘murundus’ of Central Brazil: evidence for the termite-origin hypothesis. Journal of Tropical Ecology, 8: 1–19

    Article  Google Scholar 

  • Oliveira-Filho, A.T. 1992b. The vegetation of Brazilian ‘murundus’-the island-effect on the plant community. Journal of Tropical Ecology, 8:465–486

    Article  Google Scholar 

  • Olmsted, I. 1993. Wetlands of Mexico. In: Whigham, D.F., Dykyjová, D. and Hejny, S. eds. Wetlands of the World I: Inventory, Ecology and Management. Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Olmsted, I. and Durán G.R. 1988. Aspectos ecológicos de los Petenes en Florida, Campeche y Quintana Roo. In: Proceedings Symposium on the Ecology of the Usumacinta-Grijalva Delta. Villabermosa, Tab1987. Villahermosa, Tabasco, Mexico: INIREB, Division Regional Tabasco. Pp. 519–536.

    Google Scholar 

  • Olmsted, I.C., Loope, L.L. and Hilsenbeck, C.E. 1980. Tropical Hardwood Hammocks of the Interior of Everglades National Park and Big Cypress National Preserve. Report T-604, Homestead, FL: South Florida Research Center, National Park Service, U.S. Department of the Interior.

    Google Scholar 

  • Perry, E., Swift, J., Gamboa, J., Reeve, A., Sanborn, R., Marin, L. and Villasuso, M. 1989. Geologic and environmental aspects of surface cementation, north coast, Yucatán, Mexico. Geology, 17: 818–821.

    Article  CAS  Google Scholar 

  • Pirkle, F.L. 1984. Environment of deposition of Trail Ridge sediments as determined from factor analysis. In: Cohen, A.D., Casagrande, D.J., Andrejko, M.J. and Best G.R. eds. The Okefenokee Swamp: Its Natural History, Geology, and Geochemistry, Los Alamos, NM: Wetland Surveys.

    Google Scholar 

  • Pirkle, W.A. and Pirkle, E.C. 1984. Physiographic features and field relations of Trail Ridge in northern Florida and southeastern Georgia. In: Cohen, A.D., Casagrande, D.J., Andrejko, M.J. and Best G.R. eds. The Okefenokee Swamp: Its Natural History, Geology, and Geochemistry, Los Alamos, NM: Wetland Surveys.

    Google Scholar 

  • Ponce, V.M. and da Cunha, C.N. 1993. Vegetated earthmounds in tropical savannas of central Brazil: a synthesis. With special reference to the Pantanal de Mato Grosso. Journal of Biogeography, 20: 219–225.

    Article  Google Scholar 

  • Por, F.D. 1995. The Pantanal of Mato Grosso (Brazil). World’s Largest Wetland. Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Book  Google Scholar 

  • Prance, G.T. and Schaller, G.B. 1982. Preliminary study of some vegetation types of the Pantanal, Mato Grosso, Brazil. Brittonia, 34: 228–251.

    Article  Google Scholar 

  • Rapport, D.J. and Whitford, W.G. 1999. How ecosystems respond to stress. Bioscience, 49: 193–203.

    Article  Google Scholar 

  • Redfield, G.W. 1998. A conceptual basis for quantifying atmospheric deposition of phosphorus to the South Florida Ecosystem. Unpublished manuscript.

    Google Scholar 

  • Rich, F.J. 1984. An ancient flora of the eastern Okefenokee Swamp as determined by palynology. In: Cohen, A.D., Casagrande, D.J., Andrejko, M.J. and Best G.R. eds. The Okefenokee Swamp: Its Natural History, Geology, and Geochemistry, Los Alamos, NM: Wetland Surveys.

    Google Scholar 

  • Rich, F.J. and Spackman, W. 1979. Modern and ancient pollen sedimentation around tree islands in the Okefenokee Swamp. Palynology, 3: 219–226.

    Article  Google Scholar 

  • Rico-Gray, V. 1982. Estudio de la vegetacin de la zona costera inundable del noroeste del estado de Campeche, Mexico: Los petenes. Biotica, 7:171–190.

    Google Scholar 

  • Ritchie, J.C. 1960. The vegetation of northern Manitoba. VI. The lower Hayes River region. Canadian Journal of Botany, 38:769–788

    Article  Google Scholar 

  • Robertson, W.B. Jr. 1953. A survey of the effects of fire in Everglades National Park. Technical Publication. National Park Service, United States Department of Interior.

    Google Scholar 

  • Ruuhijärvi, R. 1983. The Finnish mire types and their regional distribution. In: Gore, A.J.P. ed. Ecosystems of the World 4B. Mires: Swamp, Bog, Fen and Moor. Regional Studies. Amsterdam: Elsevier Scientific Publishing Co.

    Google Scholar 

  • Rykiel, E.J. Jr. 1984. General hydrology and mineral budgets for Okefenokee Swamp. In: Cohen, A.D., Casagrande, D.J., Andrejko, M.J. and Best G.R. eds. The Okefenokee Swamp: Its Natural History, Geology, and Geochemistry, Los Alamos, NM: Wetland Surveys.

    Google Scholar 

  • Saijo, Y., Mitamura, O., Hino, K., Ikusima, I., Tundisi, J.G., Matsumura-Tundisi, T., Sunaga, T., Nakamoto, N., Fukuhara, H., Barbosa, F.A.R., Henry, R. and Silva, V.P. 1997. Physicochemical features of rivers and lakes in Pantanal Wetland. Japanese Journal of Limnology, 58:69–82.

    Article  CAS  Google Scholar 

  • Sasser, C.E., Gosselink, J.G. and Shaffer, G.P. 1991. Distribution of nitrogen and phosphorus in a Louisiana freshwater floating marsh. Aquatic Botany, 41:317–331.

    Article  Google Scholar 

  • Sasser, C.E., Gosselink, J.G., Swenson, E.M., and Evers, D.E. 1995. Hydrologie, vegetation, and substrate characteristics of floating marshes in sediment-rich wetlands of the Mississippi river delta plain, Louisiana, USA. Wetlands Ecology, 3:171–187.

    Google Scholar 

  • Schortemeyer, J.L. 1980. An evaluation of water management practices for optimum wildlife benefits in Conservation Area 3A. Tallahassee, FL: Florida Game and Fresh Water Fish Commission.

    Google Scholar 

  • Sculthorpe, C.D. 1967. The Biology of Aquatic Vascular Plants. New York: St. Martin’s Press. 610 pp.

    Google Scholar 

  • Semeniuk, V. 1983. Mangrove distribution in Northwestern Australia in relationship to regional and local freshwater seepage. Vegetatio, 53: 11–31.

    Article  Google Scholar 

  • Sharma, C. 1970. Origin of ‘floating islands’ in the lakes at Khajiar and Rewalsar in Himachal Pradesh. The Palaeobotanist, 19: 270–276.

    Google Scholar 

  • Siegel, D.I. 1981. Ground water and the evolution of patterned mires, Glacial Lake Agassiz peatlands, northern Minnesota. Journal of Ecology, 71: 913–921.

    Google Scholar 

  • Sjörs, H. 1950. On the relation between vegetation and electrolytes in north Swedish mire waters. Oikos, 2: 243–258.

    Article  Google Scholar 

  • Sjörs, H. 1959. Bogs and fens in the Hudson Bay lowlands. Arctic, 12: 2–19.

    Google Scholar 

  • Sjörs, H. 1961. Surface patterns in boreal peatlands. Endeavour, 20/80: 217–224.

    Google Scholar 

  • Sjörs, H. 1983. Mires of Sweden. In: Gore, A.J.P. ed. Ecosystems of the World 4B. Mires: Swamp, Bog, Fen and Moor. Regional Studies. Amsterdam: Elsevier Scientific Publishing Co.

    Google Scholar 

  • Slack, N.G., Vitt, D.H. and Horton, D.G. 1980. Vegetation gradients of minerotrophically rich fens in western Alberta. Canadian Journal of Botany, 58: 330–350.

    Article  Google Scholar 

  • Smith, A. 1971. Mato Grosso. Last Virgin Land. New York: E.P. Dutton and Company Inc.

    Google Scholar 

  • Snyder, G.H. and Davidson, J.M. 1994. Everglades agriculture: past, present, and future. In: Davis, S.M. and Ogden, J.C. eds. Everglades. The Ecosystem and Its Restoration. Delray Beach, FL: St. Lucie Press.

    Google Scholar 

  • Spackman, W., Cohen, A.D., Given, P.H., and Casagrande, D.J. 1974. The comparative study of the Okefenokee Swamp and the Everglades-Mangrove swamp-marsh complex of southern Florida. A field guidebook for Geological Society of America Field Trip No. 6, November 15,16,17,1974. Miami FL: Miami Geological Society.

    Google Scholar 

  • Stinner, D.H. 1984. Nutrient enrichment and effects in Macks Island rookery. In: Cohen, A.D., Casagrande, D.J., Andrejko, M.J. and Best G.R. eds. The Okefenokee Swamp: Its Natural History, Geology, and Geochemistry, Los Alamos, NM: Wetland Surveys.

    Google Scholar 

  • Thompson, K. 1985. Emergent plants of permanent and seasonally flooded wetlands. In: Denny, P. ed. The Ecology and Management of African Wetland Vegetation. Dordrecht, The Netherlands: Junk.

    Google Scholar 

  • Trivedy, R.K., Sharma, K.P., Goel, P.K. and Gopal, B. 1978. Some ecological observations on floating islands. Hydrobiologica, 60: 187–190.

    Article  CAS  Google Scholar 

  • Trowell, C.T. 1984. Indians in the Okefenokee Swamp. In: Cohen, A.D., Casagrande, D.J., Andrejko, M.J. and Best G.R. eds. The Okefenokee Swamp: Its Natural History, Geology, and Geochemistry, Los Alamos, NM: Wetland Surveys.

    Google Scholar 

  • Van Cleve, K., Vierreck, L.A. and Schlentner, R.L. 1971. Accumulation of nitrogen in alder (Alnus) ecosystems near Fairbanks, Alaska. Arctic and Alpine Research, 3: 101–114.

    Article  Google Scholar 

  • van der Valk, A.G., Mason, D., Wetzel, P.R., Sklar, F.H., Gawlik, D., Korvela, M., Newman, S., McVoy, C., Wu, Y., Krupa, S. and Miao, S. 1998. Proposed plan of work for tree island research. Unpublished report. West Palm Beach FL: Florida Center for Environmental Studies and South Florida Water Management District

    Google Scholar 

  • Vitousek, P.M., Whiteaker, L.D., Mueller-Dombois, D., and Matson, P.A. 1987. Biological invasion by My rica fay a alters ecosystem development in Hawaii. Science, 238: 802–804.

    Article  PubMed  CAS  Google Scholar 

  • Vitt, D.H., Achuff, P. and Andras, R.E. 1975. The vegetation and chemical properties of patterned fens in the Swan Hills, north central Alberta. Canadian Journal of Botany, 53: 2776–2795.

    Article  CAS  Google Scholar 

  • Ward, W.C., Weidie, A.E. and Back, W. 1985. Geology and Hydrogeology of the Yucatán and Quaternary Geology of Northeastern Yucatán Peninsula. New Orleans, LA: New Orleans Geological Society.

    Google Scholar 

  • Wetzel, P.R. 2003. Analysis of tree island vegetation communities. Hydrologie and fire impacts over a decade. In: Sklar, F. and van der Valk, A. eds. Tree Islands of the Everglades. Boston, MA: Kluwer Academic Publishers, chapter 12

    Google Scholar 

  • Worth, D.F. 1988. Environmental response of WCA-2A to reduction in regulation schedule and marsh drawdown. Technical Publication #88-2. West Palm Beach, FL: South Florida Water Management District

    Google Scholar 

  • Wright, A.H. and Wright, A.A. 1932. The habitats and composition of the vegetation ofOkefinokee Swamp, Georgia. Ecological Monographs, 2: 109–232.

    Article  Google Scholar 

  • Wright, N.O. 1984. A cultural ecological history of the Okefenokee. In: Cohen, A.D., Casagrande, D.J., Andrejko, M.J. and Best G.R. eds. The Okefenokee Swamp: Its Natural History, Geology, and Geochemistry, Los Alamos, NM: Wetland Surveys.

    Google Scholar 

  • Wuethrich, B. 1995. Deliberate flood renews habitats. Science, 272: 344–345.

    Article  Google Scholar 

  • Zaffke, M. 1983. Plant communities of water conservation area 3A; base-line documentation prior to the operation of S-339 and S-340. Technical Memorandum. West Palm Beach, FL: South Florida Water Management District.

    Google Scholar 

  • Zoltai, S.C. and Johnson, J.D. 1985. Development of a treed bog island in a minerotrophic fen. Canadian Journal of Botany, 63:1076–1085.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Kluwer Academic Publishers

About this chapter

Cite this chapter

Wetzel, P.R. (2002). Tree Island Ecosystems of the World. In: Sklar, F.H., Van Der Valk, A. (eds) Tree Islands of the Everglades. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0001-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0001-1_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6490-3

  • Online ISBN: 978-94-009-0001-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics