Skip to main content

Network Biomarkers for Diagnosis and Prognosis of Human Prostate Cancer

  • Chapter
  • First Online:
Bioinformatics for Diagnosis, Prognosis and Treatment of Complex Diseases

Part of the book series: Translational Bioinformatics ((TRBIO,volume 4))

Abstract

Prostate cancer is one of the most lethal malignancies worldwide, owing to the lack of precise markers for early diagnosis. Researchers are now routinely identifying biomarkers for prostate cancer using whole-genome expression profiling along with proteomic technologies. Although there has been some success in this field, many efforts have been complicated by the fact that individual markers are highly divergent. Prostate cancer is a systems biology disease that results from the accumulated mutations acting in concert. Hence the individual markers would fail to capture the heterogeneity of carcinogenesis. As molecular interaction networks become available for human, network-level biomarker evolves as a promising methodology that can address this challenge. In this chapter we first describe some foundations of network analysis, and then introduce the recent progress in network biomarker discovery for diagnosis and prognosis of human prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Apweiler R, Attwood TK, Bairoch A, Bateman A, Birney E, Biswas M, Bucher P, Cerutti L, Corpet F, Croning MD, et al. The InterPro database, an integrated documentation resource for protein families, domains and functional sites. Nucleic Acids Res. 2001;29:37–40.

    Article  PubMed  CAS  Google Scholar 

  • Bader GD, Betel D, Hogue CW. BIND: the biomolecular interaction network database. Nucleic Acids Res. 2003;31:248–50.

    Article  PubMed  CAS  Google Scholar 

  • Barry MJ. Clinical practice: prostate-specific-antigen testing for early diagnosis of prostate cancer. N Engl J Med. 2001;344:1373–7.

    Article  PubMed  CAS  Google Scholar 

  • Brown KR, Jurisica I. Online predicted human interaction database. Bioinformatics. 2005;21:2076–82.

    Article  PubMed  CAS  Google Scholar 

  • Chatr-Aryamontri A, Breitkreutz BJ, Heinicke S, Boucher L, Winter A, Stark C, Nixon J, Ramage L, Kolas N, O’Donnell L, et al. The BioGRID interaction database: 2013 update. Nucleic Acids Res. 2012;41:D816–23.

    Article  PubMed  Google Scholar 

  • Chen J, Yuan B. Detecting functional modules in the yeast protein–protein interaction network. Bioinformatics. 2006;22:2283–90.

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Wang Y, Guo D, Shen B. A systems biology perspective on rational design of peptide vaccine against virus infections. Curr Top Med Chem. 2012;12:1310–9.

    Article  PubMed  CAS  Google Scholar 

  • Chowdhury SA, Koyuturk M. Identification of coordinately dysregulated subnetworks in complex phenotypes. Pac Symp Biocomput. 2009. p. 133–44.

    Google Scholar 

  • Chuang HY, Lee E, Liu YT, Lee D, Ideker T. Network-based classification of breast cancer metastasis. Mol Syst Biol. 2007;3:140.

    Article  PubMed  Google Scholar 

  • Darson MF, Pacelli A, Roche P, Rittenhouse HG, Wolfert RL, Young CY, Klee GG, Tindall DJ, Bostwick DG. Human glandular kallikrein 2 (hK2) expression in prostatic intraepithelial neoplasia and adenocarcinoma: a novel prostate cancer marker. Urology. 1997;49:857–62.

    Article  PubMed  CAS  Google Scholar 

  • DeSouza L, Diehl G, Rodrigues MJ, Guo J, Romaschin AD, Colgan TJ, Siu KW. Search for cancer markers from endometrial tissues using differentially labeled tags iTRAQ and cICAT with multidimensional liquid chromatography and tandem mass spectrometry. J Proteome Res. 2005;4:377–86.

    Article  PubMed  CAS  Google Scholar 

  • Domon B, Aebersold R. Mass spectrometry and protein analysis. Science. 2006;312:212–7.

    Article  PubMed  CAS  Google Scholar 

  • Ein-Dor L, Zuk O, Domany E. Thousands of samples are needed to generate a robust gene list for predicting outcome in cancer. Proc Natl Acad Sci USA. 2006;103:5923–8.

    Article  PubMed  CAS  Google Scholar 

  • Ergun A, Lawrence CA, Kohanski MA, Brennan TA, Collins JJ. A network biology approach to prostate cancer. Mol Syst Biol. 2007;3:82.

    Article  PubMed  Google Scholar 

  • Glinsky GV, Glinskii AB, Stephenson AJ, Hoffman RM, Gerald WL. Gene expression profiling predicts clinical outcome of prostate cancer. J Clin Invest. 2004;113:913–23.

    PubMed  CAS  Google Scholar 

  • Guo Z, Wang L, Li Y, Gong X, Yao C, Ma W, Wang D, Zhu J, Zhang M, Yang D, et al. Edge-based scoring and searching method for identifying condition-responsive protein–protein interaction sub-network. Bioinformatics. 2007;23:2121–8.

    Article  PubMed  CAS  Google Scholar 

  • Han K, Park B, Kim H, Hong J, Park J. HPID: the human protein interaction database. Bioinformatics. 2004;20:2466–70.

    Article  PubMed  CAS  Google Scholar 

  • Hassan AH, Mahmoud S, El-Hamidy A. Quantitative analysis of total proteins and carbohydrates in the digestive gland-gonad complex (DGG) and hemolymph of the freshwater prosobranch snail Lanistes carinatus. J Egypt Soc Parasitol. 2011;40:303–10.

    Google Scholar 

  • Ideker T, Ozier O, Schwikowski B, Siegel AF. Discovering regulatory and signalling circuits in molecular interaction networks. Bioinformatics. 2002;18 Suppl 1:S233–40.

    Article  PubMed  Google Scholar 

  • Jin G, Zhou X, Cui K, Zhang XS, Chen L, Wong ST. Cross-platform method for identifying candidate network biomarkers for prostate cancer. IET Syst Biol. 2009;3:505–12.

    Article  PubMed  CAS  Google Scholar 

  • Joshi-Tope G, Gillespie M, Vastrik I, D’Eustachio P, Schmidt E, de Bono B, Jassal B, Gopinath GR, Wu GR, Matthews L, et al. Reactome: a knowledgebase of biological pathways. Nucleic Acids Res. 2005;33:D428–32.

    Article  PubMed  CAS  Google Scholar 

  • Kang P, Mechref Y, Klouckova I, Novotny MV. Solid-phase permethylation of glycans for mass spectrometric analysis. Rapid Commun Mass Spectrom. 2005;19:3421–8.

    Article  PubMed  CAS  Google Scholar 

  • Kerrien S, Alam-Faruque Y, Aranda B, Bancarz I, Bridge A, Derow C, Dimmer E, Feuermann M, Friedrichsen A, Huntley R, et al. IntAct–open source resource for molecular interaction data. Nucleic Acids Res. 2007;35:D561–5.

    Article  PubMed  CAS  Google Scholar 

  • Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, Telikicherla D, Raju R, Shafreen B, Venugopal A, et al. Human protein reference database: 2009 update. Nucleic Acids Res. 2009;37:D767–72.

    Google Scholar 

  • Kim TH, Barrera LO, Zheng M, Qu C, Singer MA, Richmond TA, Wu Y, Green RD, Ren B. A high-resolution map of active promoters in the human genome. Nature. 2005;436:876–80.

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, White TA, MacKenzie AP, Clegg N, Lee C, Dumpit RF, Coleman I, Ng SB, Salipante SJ, Rieder MJ, et al. Exome sequencing identifies a spectrum of mutation frequencies in advanced and lethal prostate cancers. Proc Natl Acad Sci USA. 2011;108:17087–92.

    Article  PubMed  CAS  Google Scholar 

  • Leman ES, Cannon GW, Trock BJ, Sokoll LJ, Chan DW, Mangold L, Partin AW, Getzenberg RH. EPCA-2: a highly specific serum marker for prostate cancer. Urology. 2007;69:714–20.

    Article  PubMed  Google Scholar 

  • Licata L, Briganti L, Peluso D, Perfetto L, Iannuccelli M, Galeota E, Sacco F, Palma A, Nardozza AP, Santonico E, et al. MINT, the molecular interaction database: 2012 update. Nucleic Acids Res. 2011;40:D857–61.

    Article  PubMed  Google Scholar 

  • Liu X, Liu ZP, Zhao XM, Chen L. Identifying disease genes and module biomarkers by differential interactions. J Am Med Inform Assoc. 2011;19:241–8.

    Article  PubMed  Google Scholar 

  • Luo J, Duggan DJ, Chen Y, Sauvageot J, Ewing CM, Bittner ML, Trent JM, Isaacs WB. Human prostate cancer and benign prostatic hyperplasia: molecular dissection by gene expression profiling. Cancer Res. 2001;61:4683–8.

    PubMed  CAS  Google Scholar 

  • Luo J, Zha S, Gage WR, Dunn TA, Hicks JL, Bennett CJ, Ewing CM, Platz EA, Ferdinandusse S, Wanders RJ, et al. Alpha-methylacyl-CoA racemase: a new molecular marker for prostate cancer. Cancer Res. 2002;62:2220–6.

    PubMed  CAS  Google Scholar 

  • Marouga R, David S, Hawkins E. The development of the DIGE system: 2D fluorescence difference gel analysis technology. Anal Bioanal Chem. 2005;382:669–78.

    Article  PubMed  CAS  Google Scholar 

  • Merchant M, Weinberger SR. Recent advancements in surface-enhanced laser desorption/ionization-time of flight-mass spectrometry. Electrophoresis. 2000;21:1164–77.

    Article  PubMed  CAS  Google Scholar 

  • Nibbe RK, Markowitz S, Myeroff L, Ewing R, Chance MR. Discovery and scoring of protein interaction subnetworks discriminative of late stage human colon cancer. Mol Cell Proteomics. 2009;8:827–45.

    Article  PubMed  CAS  Google Scholar 

  • Nibbe RK, Koyuturk M, Chance MR. An integrative-omics approach to identify functional sub-networks in human colorectal cancer. PLoS Comput Biol. 2010;6:e1000639.

    Article  PubMed  Google Scholar 

  • Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics. 2002;1:376–86.

    Article  PubMed  CAS  Google Scholar 

  • Pagel P, Kovac S, Oesterheld M, Brauner B, Dunger-Kaltenbach I, Frishman G, Montrone C, Mark P, Stumpflen V, Mewes HW, et al. The MIPS mammalian protein–protein interaction database. Bioinformatics. 2005;21:832–4.

    Article  PubMed  CAS  Google Scholar 

  • Rhodes DR, Barrette TR, Rubin MA, Ghosh D, Chinnaiyan AM. Meta-analysis of microarrays: interstudy validation of gene expression profiles reveals pathway dysregulation in prostate cancer. Cancer Res. 2002;62:4427–33.

    PubMed  CAS  Google Scholar 

  • Salwinski L, Miller CS, Smith AJ, Pettit FK, Bowie JU, Eisenberg D. The database of interacting proteins: 2004 update. Nucleic Acids Res. 2004;32:D449–51.

    Article  PubMed  CAS  Google Scholar 

  • Siegel R, Naishadham D, Jemal A. Cancer statistics. CA Cancer J Clin. 2012;62:10–29.

    Article  PubMed  Google Scholar 

  • Siegel R, Naishadham D, Jemal A. Cancer statistics. CA Cancer J Clin. 2013;63:11–30.

    Article  PubMed  Google Scholar 

  • Su J, Yoon BJ, Dougherty ER. Identification of diagnostic subnetwork markers for cancer in human protein–protein interaction network. BMC Bioinform. 2010;11 Suppl 6:S8.

    Article  Google Scholar 

  • Taylor IW, Linding R, Warde-Farley D, Liu Y, Pesquita C, Faria D, Bull S, Pawson T, Morris Q, Wrana JL. Dynamic modularity in protein interaction networks predicts breast cancer outcome. Nat Biotechnol. 2009;27:199–204.

    Article  PubMed  CAS  Google Scholar 

  • Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, Arora VK, Kaushik P, Cerami E, Reva B, et al. Integrative genomic profiling of human prostate cancer. Cancer Cell. 2010;18:11–22.

    Article  PubMed  CAS  Google Scholar 

  • Tinzl M, Marberger M, Horvath S, Chypre C. DD3PCA3 RNA analysis in urine–a new perspective for detecting prostate cancer. Eur Urol. 2004;46:182–6 (discussion 187).

    Google Scholar 

  • Ummanni R, Mundt F, Pospisil H, Venz S, Scharf C, Barett C, Falth M, Kollermann J, Walther R, Schlomm T, et al. Identification of clinically relevant protein targets in prostate cancer with 2D-DIGE coupled mass spectrometry and systems biology network platform. PLoS ONE. 2011;6:e16833.

    Article  PubMed  CAS  Google Scholar 

  • Varambally S, Dhanasekaran SM, Zhou M, Barrette TR, Kumar-Sinha C, Sanda MG, Ghosh D, Pienta KJ, Sewalt RG, Otte AP, et al. The polycomb group protein EZH2 is involved in progression of prostate cancer. Nature. 2002;419:624–9.

    Article  PubMed  CAS  Google Scholar 

  • Venderbos LD, Roobol MJ. PSA-based prostate cancer screening: the role of active surveillance and informed and shared decision making. Asian J Androl. 2011;13:219–24.

    Article  PubMed  Google Scholar 

  • von Mering C, Huynen M, Jaeggi D, Schmidt S, Bork P, Snel B. STRING: a database of predicted functional associations between proteins. Nucleic Acids Res. 2003;31:258–61.

    Article  Google Scholar 

  • Wang Y, Chen J, Li Q, Wang H, Liu G, Jing Q, Shen B. Identifying novel prostate cancer associated pathways based on integrative microarray data analysis. Comput Biol Chem. 2011;35:151–8.

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Wang S, Li D, Zhnag J, Gu D, Zhu Y, He F. A systems biology-based classifier for hepatocellular carcinoma diagnosis. PLoS ONE. 2011;6:e22426.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bairong Shen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Chen, J., Shen, B. (2013). Network Biomarkers for Diagnosis and Prognosis of Human Prostate Cancer. In: Shen, B. (eds) Bioinformatics for Diagnosis, Prognosis and Treatment of Complex Diseases. Translational Bioinformatics, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7975-4_11

Download citation

Publish with us

Policies and ethics