Skip to main content

Land Transformation Processes in NE China: Tracking Trade-Offs in Ecosystem Services Across Several Decades with Landsat-TM/ETM+ time Series

  • Chapter
  • First Online:
Land Use and Land Cover Mapping in Europe

Part of the book series: Remote Sensing and Digital Image Processing ((RDIP,volume 18))

  • 3584 Accesses

Abstract

Understanding the impact of land transformation processes on ecosystem services (ESS) is an essential prerequisite for drafting and implementing sustainable land management concepts. This study presents an analysis of land transformation processes in Horqin Sandy Lands, one of the dry areas in Inner Mongolia (China). It aims at demonstrating the impacts of governmental management policies on land use change and its impact on the long-term availability of important ecosystem services. Spectral mixture analysis is applied to a calibrated time series of Landsat-TM/ETM+ images which covers a period of 20 years (1987–2007); the mixture model comprises three spectral end-members (Green Vegetation, Mobile Sand, Water) which are conceived as surrogates for important ecosystem services. Changing land surface conditions are identified through linear trend analysis of end-member proportions and by mapping the spatial extension of specific surface types at subsequent dates within the observation period. For translating the derived change rates into readjustments of selected ESS-indicators a simple linear model is proposed. Fuelled by long-term satellite observations, the synoptic representation of changing ecosystem services forms the basis for addressing synergies and trade-offs between ecological and societal well-being. The case of Horqin Sandy Lands, where new land use concepts are implemented by promoting selected ecosystem services at the cost of others, provides a striking example for these mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Baldocchi DD, Xu L, Kiang N (2004) How plant functional-type, weather, seasonal drought, and soil physical properties alter water and energy fluxes of an oak–grass savanna and an annual grassland. Agr Forest Meteorol 123:13–39

    Article  Google Scholar 

  • Barrett DJ, Hill MJ, Hutley LB, Beringer J, Xu JH, Cook GD, Carter JO, Williams RJ (2005) Prospects for improving savanna biophysical models by using multiple-constraints model-data assimilation methods. Aust J Bot 53:689–714

    Article  Google Scholar 

  • Berk A, Anderson GP, Bernstein LS, Acharya PK, Dothe H, Matthew MW, Adler-Golden SM, Chetwynd JH, Richtsmeier SC, Pukall B, Allred CL, Jeong LS, Hoke ML (1999) MODTRAN4 radiative transfer modeling for atmospheric correction. SPIE

    Google Scholar 

  • Bormann H, Breuer L, Gräff T, Huisman JA (2007) Analysing the effects of soil properties changes associated with land use changes on the simulated water balance: a comparison of three hydrological catchment models for scenario analysis. Ecol Model 209:29–40

    Article  Google Scholar 

  • Butterbach-Bahl K, Kögel-Knabner I, Han X (2011) Steppe ecosystems and climate and land-use changes – vulnerability, feedbacks and possibilities for adaptation. Plant and Soil 340:1–6

    Article  Google Scholar 

  • Chander G, Markham B, Helder DL (2009) Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens Environ 113:893–903

    Article  Google Scholar 

  • Chen Y, Tang H (2005) Desertification in North China: background, anthropogenic impacts and failures in combating it. Land Degrad Dev 16:367–376

    Article  Google Scholar 

  • Cohen WB, Goward SN (2004) Landsat’s role in ecological applications of remote sensing. Bioscience 54:535–545

    Article  Google Scholar 

  • Coppin P, Jonckheere I, Nackaerts K, Muys B, Lambin E (2004) Digital change detection methods in ecosystem monitoring: a review. Int J Remote Sens 25:1565–1596

    Article  Google Scholar 

  • Costanza R, d’Arge R, de Groot R, Farber S, Grasso M, Hannon B, Limburg K, Naeem S, O’Neill RV, Paruelo J, Gaskin RG, Sutton P, van den Belt M (1997) The value of the world’s ecosystem services and natural capital. Nature 387:253–260

    Article  Google Scholar 

  • Daily GC, Polasky S, Goldstein J, Kareiva PM, Mooney HA, Pejchar L, Ricketts TH, Salzman J, Shallenberger R (2009) Ecosystem services in decision making: time to deliver. Front Ecol Environ 7:21–28

    Article  Google Scholar 

  • DeFries R, Foley JA, Asner GP (2004) Land-use choices: balancing human needs and ecosystem function. Front Ecol Environ 2:249–257

    Article  Google Scholar 

  • Ellis EC, Ramankutty N (2008) Putting people in the map: anthropogenic biomes of the world. Front Ecol Environ 6:439–447

    Article  Google Scholar 

  • Elmore AJ, Mustard JF, Manning SJ, Lobell DB (2000) Quantifying vegetation change in semiarid environments: precision and accuracy of spectral mixture analysis and the normalized difference vegetation index. Remote Sens Environ 73:87–102

    Article  Google Scholar 

  • Foley JA, DeFries R, Asner GP, Barford C, Bonan G, Carpenter SR, Chapin FS, Coe MT, Daily GC, Gibbs HK, Helkowski JH, Holloway T, Howard EA, Kucharik CJ, Monfreda C, Patz JA, Prentice C, Ramankutty N, Snyder PK (2005) Global consequences of land use. Science 309:570–574

    Article  Google Scholar 

  • Gao J, Liu Y, Chen Y (2006) Land cover changes during agrarian restructuring in Northeast China. Appl Geogr 26:312–322

    Article  Google Scholar 

  • Helldén U (2010) Application of the Lund University Coupled Desertification Model (LUCDM) in Naiman County, Jirem Prefecture, Inner Mongolia, China. In: DeSurvey-IP. A surveillance system for assessing and monitoring desertification, deliverable 1.8.3.1. Lund, Sweden, pp 1–35

    Google Scholar 

  • Hill J, Mehl W (2003) Geo- und radiometrische Aufbereitung multi- und hyperspektraler Daten zur Erzeugung langjähriger kalibrierter Zeitreihen. Photogrammetrie Fernerkundung Geoinformation 1:7–14

    Google Scholar 

  • Hill J, Sturm B (1991) Radiometric correction of multi-temporal Thematic Mapper data for use in agricultural land-cover classification and vegetation monitoring. Int J Remote Sens 12:1471–1491

    Article  Google Scholar 

  • Hill J, Mehl W, Radeloff V (1995) Improved forest mapping by combining corrections of atmospheric and topographic effects. In: Askne J (ed) Proceedings of the 14th EARSeL symposium on sensors and environmental applications of remote sensing. Göteborg, Sweden: A.A. Balkema, Rotterdam/Brookfield, pp 143–151

    Google Scholar 

  • Jiang H (1999) The Ordos Plateau of China: an endangered environment. United Nations University Press, Tokyo/New York/Paris

    Google Scholar 

  • Jiang H (2002) Culture, ethnology, and nature’s changing balance. Sandification on Mu Us Sandy Land, Inner Mongolia, China. In: Reynolds JF, Stafford-Smith M (eds) Global desertification. Do humans cause deserts? Dahlem University Press, Berlin, pp 181–196

    Google Scholar 

  • Jiang H (2006) Decentralization, ecological construction, and the environment in post-reform China: case study from Uxin Banner, Inner Mongolia. World Dev 34:1907–1921

    Article  Google Scholar 

  • Ju J, Roy DP, Vermote E, Masek J, Kovalskyy V (2012) Continental-scale validation of MODIS-based and LEDAPS Landsat ETM+ atmospheric correction methods. Remote Sens Environ 122:175–184

    Article  Google Scholar 

  • Kareiva PM, Watts S, McDonald R, Boucher T (2007) Domesticated nature: shaping landscapes and ecosystems for human welfare. Science 316:1866–1869

    Article  Google Scholar 

  • Kaufman YJ, Wald A, Remer LA, Gao B, Li R, Flynn L (1997) The MODIS 2.1 μm channel – correlation with visible reflectance for use in remote sensing of aerosol. IEEE Trans Geosci Remote Sens 35:1286–1298

    Article  Google Scholar 

  • Kotchenova SY, Vermote EF, Matarrese R, Klemm FJ (2006) Validation of a vector version of the 6S radiative transfer code for atmospheric correction of satellite data. Part I: path radiance. Appl Optics 45:6762–6774

    Article  Google Scholar 

  • Lambin EF, Geist HJ (2001) Global land-use and land-cover change: what have we learned so far. Glob Change Newsl 46(6):27–30

    Google Scholar 

  • Lambin EF, Geist HJ (2006) Land use and land cover change. Local processes and global impacts. Springer, Berlin/Heidelberg/New York

    Book  Google Scholar 

  • Lambin EF, Meyfroidt P (2010) Land use transitions: socio-ecological feedback versus socio-economic change. Land Use Policy 27:108–118

    Article  Google Scholar 

  • Liu J, Liu M, Tian H, Zhuang D, Zhang Z, Zhang W, Tang X, Deng X (2005a) Spatial and temporal patterns of China’s cropland during 1990–2000: an analysis based on Landsat TM data. Remote Sens Environ 98:442–456

    Article  Google Scholar 

  • Liu J, Tian H, Liu M, Zhuang D, Melillo JM, Zhang Z (2005b) China’s changing landscape during the 1990s: large-scale land transformations estimated with satellite data. Geophys Res Lett 32:L02405

    Google Scholar 

  • Markham BL, Helder DL (2012) Forty-year calibrated record of earth-reflected radiance from Landsat: a review. Remote Sens Environ 122:30–40

    Article  Google Scholar 

  • Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: current state and trends. Island Press, Washington, DC/Covelo/London

    Google Scholar 

  • Nelson E, Mendoza G, Regetz J, Polasky S, Tallis H, Cameron DR, Chan KMA, Daily GC, Goldstein J, Kareiva PM, Lonsdorf E, Naidoo R, Ricketts TH, Shaw R (2009) Modeling multiple ecosystem services, biodiversity conservation, commodity production, and tradeoffs at landscape scale. Front Ecol Environ 7:4–11

    Article  Google Scholar 

  • Piao S, Fang J, Ciais P, Peylin P, Huang Y, Sitch S, Wang T (2009) The carbon balance of terrestrial ecosystems in China. Nature 458:1009–1013

    Article  Google Scholar 

  • Press W-H, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in C. The art of scientific computing. Cambridge University Press, Cambridge, MA

    Google Scholar 

  • Rahman H, Dedieu G (1994) SMAC: a simplified method for the atmospheric correction of satellite measurements in the solar spectrum. Int J Remote Sens 15:123–143

    Article  Google Scholar 

  • Richter R (1996) A spatially adaptive fast atmospheric correction algorithm. Int J Remote Sens 17:1201–1214

    Article  Google Scholar 

  • Röder A, Kümmerle T, Hill J (2005) Extension of retrospective datasets using multiple sensors. An approach to radiometric intercalibration of Landsat TM and MSS data. Remote Sens Environ 95:195–210

    Article  Google Scholar 

  • Röder A, Udelhoven T, Hill J, del Barrio G, Tsiourlis G (2008) Trend analysis of Landsat-TM and -ETM+ imagery to monitor grazing impact in a rangeland ecosystem in Northern Greece. Remote Sens Environ 112:2863–2875

    Article  Google Scholar 

  • Rogan J, Chen D (2004) Remote sensing technology for mapping and monitoring land-cover and land-use change. Prog Plan 61:301–325

    Article  Google Scholar 

  • Rogge DM, Rivard B, Zhang J, Feng J (2006) Iterative spectral unmixing for optimizing per-pixel endmember sets. IEEE Trans Geosci Remote Sens 44:3725–3736

    Article  Google Scholar 

  • Schott JR, Salvaggio C, Volchok WJ (1988) Radiometric scene normalization using pseudoinvariant features. Remote Sens Environ 26:1–16

    Article  Google Scholar 

  • Schowengerdt RA (1997) Remote sensing. Models and methods for image processing. Academic, San Diego/London

    Google Scholar 

  • Small C (2004) The Landsat ETM+ spectral mixing space. Remote Sens Environ 93:1–17

    Article  Google Scholar 

  • Smith MO, Ustin SL, Adams JB, Gillespie AR (1990) Vegetation in deserts: I. A regional measure of abundance from multispectral images. Remote Sens Environ 31:1–26

    Article  Google Scholar 

  • Sneath D (1998) State policy and pasture degradation in Inner Asia. Science 281:1147–1148

    Article  Google Scholar 

  • Tanré D, Deroo C, Duhaut P, Herman M, Morcrette JJ, Perbos J, Deschamps PY (1990) Description of a computer code to simulate the signal in the solar spectrum: the 5S code. Int J Remote Sens 11:659–668

    Article  Google Scholar 

  • Tong C, Wu J, Yong S, Yang J, Yong W (2004) A landscape-scale assessment of steppe degradation in the Xilin River Basin, Inner Mongolia, China. J Arid Environ 59:133–149

    Article  Google Scholar 

  • Verbesselt J, Hyndman R, Zeileis A, Culvenor D (2010) Phenological change detection while accounting for abrupt and gradual trends in satellite image time series. Remote Sens Environ 114:2970–2980

    Article  Google Scholar 

  • Vermote EF, Kotchenova S (2008) Atmospheric correction for the monitoring of land surfaces. J Geophys Res Atmos 113(D23):D23S90

    Article  Google Scholar 

  • Vermote EF, Tanré D, Deuze JL, Herman M, Morcrette JJ (1997) Second simulation of the satellite signal in the solar spectrum, 6S – an overview. IEEE Trans Geosci Remote Sens 35:675–686

    Article  Google Scholar 

  • Vermote EF, El Saleous N, Justice C (2002) Atmospheric correction of the MODIS data in the visible to middle infrared: first results. Remote Sens Environ 83:97–111

    Article  Google Scholar 

  • Vicente-Serrano SM, Pérez-Cabello F, Lasanta T (2008) Assessment of radiometric correction techniques in analyzing vegetation variability and change using time series of Landsat images. Remote Sens Environ 112:3916–3934

    Article  Google Scholar 

  • Vitousek PM, Kooney HA, Lubchenco J, Melillo JM (1997) Human domination of Earth’s ecosystems. Science 277:494–499

    Article  Google Scholar 

  • Vogelmann JE, Xian G, Homer C, Tolk B (2012) Monitoring gradual ecosystem change using Landsat time series analyses: case studies in selected forest and rangeland ecosystems. Remote Sens Environ 122:92–105

    Article  Google Scholar 

  • Woodcock CE, Allen R, Anderson M, Belward A, Bindschadler R, Cohen W, Gao F, Goward SN, Helder D, Helmer E, Nemani R, Oreopoulos L, Schott J, Thenkabail PS, Vermote EF, Vogelmann J, Wulder MA, Wynne R (2008) Free access to Landsat imagery. Science 320:1011

    Article  Google Scholar 

  • Wu W, de Pauw E (2010) Policy impacts on land degradation: evidence revealed by remote sensing in Western Ordos, China. In: Zdruli P, Pagliai M, Kapur S, Faz Cano AF (eds) Land degradation and desertification: assessment, mitigation and remediation. Springer, Dordrecht/Heidelberg/London/New York, pp 219–233

    Chapter  Google Scholar 

  • Wulder MA, Masek JG, Cohen WB, Loveland TR, Woodcock CE (2012) Opening the archive: how free data has enabled the science and monitoring promise of Landsat. Remote Sens Environ 122:2–10

    Article  Google Scholar 

  • Zhu, Z, Zou B (1988) Desertification and rehabilitation – a case study in Horqin Sandy Land. Institute of Desert Research, Academia Sinica, Lanzhou. Research report, 1–113

    Google Scholar 

Download references

Acknowledgements

This study would not have been possible without the invaluable support Dr. Du Zitao (Institute for Remote Sensing Applications, Chinese Academy of Sciences, Beijing) provided during several field visits to Horqin Sandy Lands. The discussions with Prof. Ulf Helldén (University of Lund) and Dr. Achim Röder (University of Trier) were essential in sharpening the authors’ perception of land transformation processes and for developing conceptual views discussed in this study. The support of Wolfgang Mehl (European Commission, Joint Research Centre, Ispra, Italy) in implementing a semi-automatic processing chain for high-precision geocoding is gratefully acknowledged. Part of this research was financially supported by the European Commission through funding the project “DeSurvey” (Integrated Project contract No. 003950). This support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joachim Hill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hill, J., Stellmes, M., Wang, C. (2014). Land Transformation Processes in NE China: Tracking Trade-Offs in Ecosystem Services Across Several Decades with Landsat-TM/ETM+ time Series. In: Manakos, I., Braun, M. (eds) Land Use and Land Cover Mapping in Europe. Remote Sensing and Digital Image Processing, vol 18. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7969-3_23

Download citation

Publish with us

Policies and ethics