Skip to main content

Rainfalls and Storm Erosivity

  • Chapter
  • First Online:
Storminess and Environmental Change

Part of the book series: Advances in Natural and Technological Hazards Research ((NTHR,volume 39))

Abstract

Changes in the spatial and temporal features of rainfall patterns may have important effects on the magnitude and timing of erosive storms, which will in turn result in changes in landscape response. Mediterranean Europe regions are characterized by strong climatic variability, where dry periods are interrupted by pulsing rainstorms throughout the year. Examples of these types are illustrated in this chapter by heavy showers or thunderstorms commonly localised, causing surface erosion by overland flow in the form of rill and gully erosion with remarkable mass movements on the torrential landscape. However, erosive storms forcing is not only related to water erosion, but it is also involved in multiple damaging hydrological events, such as flash-flooding, mudflow and non-point-source pollution. These phenomena generally agree with the seasonality pattern as flash flood-generating rainfall over the various Mediterranean regions. The chapter also maintaining a focus on the analysis on as extreme events are linked to the storm erosivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acker JG, Leptoukh G (2007) Online analysis enhances use of NASA Earth science data. Eos Trans Am Geophys Union 88:14–17

    Article  Google Scholar 

  • Allen MR, Ingram WJ (2002) Constraints on future changes in climate and the hydrologic cycle. Nature 419:224–232

    Article  Google Scholar 

  • Aryal SK, Bates BC, Campbell EP, Li Y, Palmer MJ, Viney NR (2009) Characterizing and modeling temporal and spatial trends in rainfall extremes. J Hydrometeorol 10:241–253

    Article  Google Scholar 

  • Becker EJ, Berbery EH, Higgins RW (2009) Understanding the characteristics of daily precipitation over the United States using the North American Regional Reanalysis. J Clim 22:6268–6286

    Article  Google Scholar 

  • Beguería S, Vicente-Serrano SM (2006) Mapping the hazard of extreme rainfall by peaks over threshold extreme value analysis and spatial regression techniques. J Appl Meteorol Climatol 45:108–124

    Article  Google Scholar 

  • Clarke ML, Rendel HM (2007) Climate, extreme events and land degradation. In: Sivakumar MVK, Ndiang’ui N (eds) Climate and land degradation. Springer, Berlin, pp 137–152

    Chapter  Google Scholar 

  • Cook HL (1936) The nature and controlling variables of the water erosion process. Soil Sci Soc Am Proc 1:60–64

    Google Scholar 

  • Curtis S, Salahuddin A, Adler RF, Huffman GJ, Gu G, Hong Y (2007) Precipitation extremes estimated by GPCP and TRMM: ENSO relationships. J Hydrometeorol 8:678–689

    Article  Google Scholar 

  • Diodato N (2004) Local models for rainstorm-induced hazard analysis on Mediterranean river-torrential geomorphological systems. Nat Hazards Earth Syst Sci 4:389–397

    Article  Google Scholar 

  • Diodato N (2005) Predicting RUSLE (Revised Universal Soil Loss Equation) monthly erosivity index from readily available rainfall data in Mediterranean area. Environmentalist 25:63–70

    Google Scholar 

  • Diodato N (2006) Modelling net erosion responses to enviroclimatic changes recorded upon multisecular timescales. Geomorphology 80:164–177

    Article  Google Scholar 

  • Di Silvio G (2008) Erosion and sediment dynamics from catchment to coast: a northern perspective. IHP-VI Tech Doc 82:1–18

    Google Scholar 

  • Easterling DR, Evans JL, Groisman PY, Karl TR, Kunkel KE, Ambenje P (2000) Observed variability and trends in extreme climate events: a brief review. Bull Am Meteorol Soc 81:417–425

    Article  Google Scholar 

  • Feingold G, Levin Z (1986) The lognormal fit to raindrop spectra from frontal convective clouds in Israel. J Appl Meteorol Climatol 25:1346–1363

    Article  Google Scholar 

  • Fernández-Raga M, Fraile R, Keizer JJ, Teijeiro MEV, Castro A, Palencia C, Calvo AI, Koenders J, Da Costa Marques RL (2010) The kinetic energy of rain measured with an optical disdrometer: an application to splash erosion. Atmos Res 96:225–240

    Article  Google Scholar 

  • Fox NI (2004) Tech Note: the representation of rainfall drop-size distribution and kinetic energy. Hydrol Earth Syst Sci 8:1001–1007

    Article  Google Scholar 

  • Foster G, Meyer L, Onstand C (1997) A runoff erosivity factor and variable slope length exponents for soil loss estimates. Trans ASABE 20:683–687

    Article  Google Scholar 

  • Foster GR (2004) User’s reference guide. Revised Universal Soil Loss Equation Version 2 (RUSLE2). National Sedimentation Laboratory, USDA-Agricultural Research Service, Washington, DC

    Google Scholar 

  • Garbrecht JD, Steiner JL, Cox CA (2007) The times they are changing: soil and water conservation in the 21st century. Hydrol Process 21:2677–2679

    Article  Google Scholar 

  • Gaume E, Bain V, Bernardara P, Newinger O, Barbuc M, Bateman A, Blaškovičová L, Blöschl G, Borga M, Dumitrescu A, Daliakopoulos I, Garcia J, Irimescu A, Kohnova S, Koutroulis A, Marchi L, Matreata S, Medina V, Preciso E, Sempere-Torres D, Stancalie G, Szolgay J, Tsanis J, Velasco D, Viglione A (2009) A compilation of data on European flash floods. J Hydrol 367:70–78

    Article  Google Scholar 

  • Giordani C, Zanchi C (1998) Studio dell’entità e della dinamica dell’erosione eolica nella regione Nafzaoua (Sud-Tunisia). Nota 1: un nuovo campionatore per lo studio dell’erosione eolica e primi risultati. Rivista di Agricoltura Subtropicale e Tropicale LXXXII:1–19 (in Italian)

    Google Scholar 

  • Harding A, Palutikof J, Holt T (2009) The climate system. In: Woodward J (ed) The physical geography of the Mediterranean. Oxford University Press, Oxford, pp 69–88

    Google Scholar 

  • Homar V, Jansà A, Campins J, Genovès A, Ramis C (2007) Towards a systematic climatology of sensitivities of Mediterranean high impact weather: a contribution based on intense cyclones. Nat Hazards Earth Syst Sci 7:445–454

    Article  Google Scholar 

  • Hrissanthou V (2005) Estimate of sediment yield in a basin without sediment data. Catena 64:333–347

    Article  Google Scholar 

  • Jones J, Waliser DE, Lau KM, Stern W (2004) Global occurrences of extreme precipitation and the Madden–Julian oscillation: observations and predictability. J Clim 17:4575–4589

    Article  Google Scholar 

  • Kinnell PIA (1973) The problem of assessing the erosive power of rainfall from meteorological observations. Soil Sci Soc Am J 37:617–621

    Article  Google Scholar 

  • Kosmas C, Danalatos N, Cammeraat LH, Chabart M, Diamantopoulos J, Farand R, Gutierrez L, Jacob A, Marques H, Martinez-Fernandez J, Mizara A, Moustakas N, Nicolau JM, Oliveros C, Pinna G, Puddu R, Puigdefabregas J, Roxo M, Simao A, Stamou G, Tomasi N, Usai D, Vacca A (1997) The effect of land use on runoff and soil erosion rates under Mediterranean conditions. Catena 29:45–59

    Article  Google Scholar 

  • Kundzewicz ZW, Mata LJ, Arnell NW et al (2007) Freshwater resources and their management. In: Parry ML, Canziani OF, Palutikof JP et al (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 173–210

    Google Scholar 

  • Larson WE, Lindstrom MJ, Schumacher TE (1997) The role of severe storms in soil erosion: a problem needing consideration. J Soil Water Conserv 52:90–95

    Google Scholar 

  • Laflen JM, Moldenhauer WC (2003) Pioneering soil erosion prediction: the USLE story. WASWC – ICRTS Ministry of Water Resources, Beijing, 52 p

    Google Scholar 

  • Lallsat MC, Puigcerver M (1997) Total rainfall and convective rainfall in Cataloin, Spain. Int J Climatol 17:1683–1695

    Article  Google Scholar 

  • Llasat MC, Llasat-Botija M, Prat MA, Price C, Mugnai A, Lagouvardos K, Kotroni V (2010) High-impact floods and flash floods in Mediterranean countries: the FLASH preliminary database. Adv Geosci 23:47–55

    Article  Google Scholar 

  • Lopez-Vicente M, Navas A, Machn J (2008) Identifying erosive periods by using RUSLE factors in mountain fields of the Central Spanish Pyrenees. Hydrol Earth Syst Sci 12:523–535

    Article  Google Scholar 

  • Marchi L, Borga M, Preciso E, Gaume E (2010) Characterisation of selected extreme flash floods in Europe and implications for flood risk management. J Hydrol 394:118–133

    Article  Google Scholar 

  • Meyer LD (1981) How rainfall affects interrill erosion. Trans ASAE 24:1472–1475

    Article  Google Scholar 

  • Morel C, Senesi S (2002) A climatology of mesoscale convective systems over Europe using satellite infrared imagery. II: Characteristics of European mesoscale convective systems. Q J R Meteorol Soc 128:1973–1995

    Article  Google Scholar 

  • Mulligan M (1998) Modelling the geomorphological impact of climatic variability and extreme events in a semi-arid environment. Geomorphology 24:59–78

    Article  Google Scholar 

  • Nicholls N, Murray W (1999) Workshop on indices and indicators for climate extremes: Asheville, NC, USA, 3–6 June 1997 breakout group B: Precipitation. Clim Chang 42:23–29

    Article  Google Scholar 

  • Nix H (1994) Water/land/life: the eternal triangle. Water Research Foundation of Australia, Canberra, pp 1–12

    Google Scholar 

  • Nunes JP, Nearing N (2011) Modelling impacts of climatic change: case studies using the new generation of erosion models. In: Morgan RPC, Nearing MA (eds) Handbook of erosion modelling. Wiley, Chichester, pp 289–312

    Chapter  Google Scholar 

  • Palecki MA, Angel JR, Hollinger SE (2005) Storm precipitation in the United States. Part I: Meteorological characteristics. J Appl Meteorol 44:933–946

    Article  Google Scholar 

  • Petrucci O, Polemio M (2003) The use of historical data for the characterisation of multiple damaging hydrogeological events. Nat Hazards Earth Syst Sci 3:17–30

    Article  Google Scholar 

  • Ramos MC, Mulligan M (2003) Impacts of climate variability and extreme events on soil hydrological processes. Geophys Res Abstr 5:11592

    Google Scholar 

  • Renard KG, Foster GR, Weesies GA, McCool DK, Toder DC (1997) Predicting soil erosion by water: a guide to conservation planning with the revised universal soil loss equation (RUSLE), USDA agricultural handbook 703. USDA, Washington, DC, 384 p

    Google Scholar 

  • Renschler CS, Cochrane T, Harbor J, Diekkruger B (2001) Regionalization methods for watershed management – hydrology and soil erosion from point to regional scales. In: 10th international soil conservation organization meeting, 24–29 March 1999, West Lafayette, IN, USA, pp 1062–1067

    Google Scholar 

  • Rigo T, Llasat M-C (2007) Analysis of mesoscale convective systems in Catalonia using meteorological radar for the period 1996–2000. Atmos Res 83:458–472

    Article  Google Scholar 

  • Sauerborn P, Klein A, Botschek J, Skowronek A (1999) Future rainfall erosivity derived from large-scale climate models – methods and scenarios for a humid region. Geoderma 93:269–276

    Google Scholar 

  • Schwab GO, Frevert RK, Edminster TW, Barnes KK (1981) Soil water conservation engineering, 3rd edn. Wiley, New York

    Google Scholar 

  • Smith JA, Seo D-J, Baeck ML, Hudlow MD (1995) An intercomparison study of NEXRAD precipitation estimates. Water Resour Res 25:23–36

    Google Scholar 

  • Taylor HR (1997) Data acquisition for sensor systems. Chapman and Hall, London, 325 p

    Book  Google Scholar 

  • Thonicke K, Sitch S, Cramer W (2003) Simulating changes in fire and ecosystem productivity under climate change conditions. Geophys Res Abstr 5:09198

    Google Scholar 

  • Tolika K, Anagnostopoulou C, Maheras P, Kutiel H (2007) Extreme precipitation related to circulation types for four case studies over the Eastern Mediterranean. Adv Geosci 12:87–93

    Article  Google Scholar 

  • Torri D, Sfalanga M (1986) Some aspects of erosion modelling. In: Giorgini A, Zingales F (eds) Agricultural nonpoint source pollution: model selection and application. Elsevier, Amsterdam, pp 161–171

    Chapter  Google Scholar 

  • Trenberth KE, Dai A, Rasmussen RM, Parsons DB (2003) The changing character of precipitation. Bull Am Meteorol Soc 84:1205–1217

    Article  Google Scholar 

  • Villar C, Tudino M, Bonetto C, de Cabo L, Stripeikis J, d’Huicque L, Troccoli O (1998) Heavy metal concentrations in the lower Paraná River and right margin of the Río de la Plata estuary. Verhandlungen – Internationale Vereinigung für theoretische und angewandte Limnologie 26:963–966

    Google Scholar 

  • Vrieling A, Sterk G, de Jong SM (2010) Satellite-based estimation of storm erosivity for Africa. J Hydrol 395:235–241

    Article  Google Scholar 

  • Watson DA, Laflen JM (1986) Soil strength, slope and rainfall intensity effects on interill erosion. Trans ASAE 29:98–102

    Article  Google Scholar 

  • Wainwright J, Thornes JB (2004) Environmental issues in the Mediterranean: processes and perspectives from the past and present. Routledge, London

    Google Scholar 

  • Wigley TML (1992) Future climate of Mediterranean basin with particular emphasis on changes in precipitation. In: Leftic J, Milliman JD, Sestini G (eds) Climatic changes and the Mediterranean. Edward Arnold, London, pp 15–44

    Google Scholar 

  • Wischmeier WH, Smith DD (1958) Rainfall energy and its relationship to soil loss. Trans Am Geophys Union 39:258–291

    Article  Google Scholar 

  • Wischmeier WH, Smith DD (1978) Predicting rainfall erosion losses: a guide to conservation planning, Agricultural handbook 537. U.S. Dept. of Agriculture, Science and Education Administration, Washington, DC, 58 p

    Google Scholar 

  • Zhai P, Zhang X, Wan H, Pan X (2003) Trends in total precipitation and frequency of daily precipitation extremes over China. J Clim 18:1096–1108

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nazzareno Diodato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Diodato, N., Soriano, M. (2014). Rainfalls and Storm Erosivity. In: Diodato, N., Bellocchi, G. (eds) Storminess and Environmental Change. Advances in Natural and Technological Hazards Research, vol 39. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7948-8_3

Download citation

Publish with us

Policies and ethics