Skip to main content

Modelling Long-Term Storm Erosivity Time-Series: A Case Study in the Western Swiss Plateau

  • Chapter
  • First Online:
  • 589 Accesses

Part of the book series: Advances in Natural and Technological Hazards Research ((NTHR,volume 39))

Abstract

Climate and weather variability induces considerable switch in storm-erosivity, which is the power of rainfall involved in many damaging hydro-meteorological events worldwide. The present paper proposes advances in our understanding of the hydroclimatological processes and their associated modelling requirements that can be useful in both climate simulation and extremes reconstruction. The novel model CREM (Complexity-reduced Storm Erosivity Model) was developed to test a parsimonious approach in order to perform historical reconstructions of annual rainfall-runoff erosivity when high-resolution precipitation records (e.g., hourly or sub-hourly) are missing. The test-area is located in the Western Swiss Plateau (around Bern), where erosive rainstorm can occur with different modes as seasonal meteorological patterns evolve. The CREM incorporates monthly precipitation and the daily maximum rainfall in a year for estimating storm erosivity compatible with the climatic factor of the RUSLE. Despite its simplicity, the CREM has estimated the storm erosivity with sufficient accuracy, explaining about 90 % of the interannual variability for the validation period (1989–2010). This model calibration offered the possibility of using the model to reconstruct the annual erosivity for the study-area since 1864. Analysis of the reconstructed time series identified two breakpoints (end of nineteenth century, 1970s) that could be related to distinct climate periods. It also indicated a moderate temporal dependence structure. In general, the CREM model produced reliable results and is thus proposed as a useful tool for climatic reconstructions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Alcántara-Ayala I (2002) Geomorphology, natural hazards, vulnerability and prevention on natural disaster in developing countries. Geomorphology 47:107–124

    Article  Google Scholar 

  • Alfieri L, Thielen Del Pozo J (2010) Towards a flash flood early warning system through hydrological simulation of probabilistic ensemble forecasts. Geophys Res Abstr 12:EGU2010–EGU15621

    Google Scholar 

  • Allison RJ, Thomas DSG (1993) The sensitivity of landscapes. In: Thomas DSG, Allison RJ (eds) Landscape sensitivity. Wiley, Chichester, pp 1–5

    Google Scholar 

  • Arnaud-Fassetta G (2003) River channel changes in the Rhone Delta (France) since the end of the Little Ice Age: geomorphological adjustment to hydroclimatic change and natural resource management. Catena 51:141–172

    Article  Google Scholar 

  • Arnaud-Fassetta G, Astrade L, Bardou E, Corbonnois J, Delahaye D, Fort M, Gautier E, Jacob N, Peiry J-L, Piégay H, Penven M-J (2009) Fluvial geomorphology and flood-risk management. Géomorphologie Relief Process Environ 2:109–128

    Article  Google Scholar 

  • Balling RC Jr, Cerveny RS (2003) Analysis of the duration, seasonal timing, and location of North Atlantic tropical cyclones: 1950–2002. Geophys Res Lett 30:2253. doi:10.1029/2003GL018404

    Article  Google Scholar 

  • Begert M, Schlegel T, Kirchhofer W (2005) Homogeneous temperature and precipitation series of Switzerland from 1864 to 2000. Int J Climatol 25:65–80

    Article  Google Scholar 

  • Blanco H, Lal R (2008) Principles of soil conservation and management. Springer, Heidelberg

    Google Scholar 

  • Bradley RS, Jones P (1992) The Little Ice Age. The Holocene 3:367–376

    Article  Google Scholar 

  • Bravard J-P (2006) Impacts of climate change on the management of upland waters: the Rhone river case. Fifth Biennial Rosenberg International Forum on Water Policy, Banff

    Google Scholar 

  • Cambardella CA, Moorman TB, Novak JM, Parkin TB, Karlen DL, Turco RF, Konopka AE (1994) Field-scale variability of soil properties in central Iowa soils. Soil Sci Soc Am J 58:1501–1511

    Article  Google Scholar 

  • Chilès JP, Delfiner P (1999) Geostatistics-modeling spatial uncertainty. Wiley, New York

    Google Scholar 

  • D’Odorico P, Yoo J, Over TM (2001) An assessment of ENSO-induced patterns of rainfall erosivity in the Southwestern United States. J Clim 14:4230–4242

    Article  Google Scholar 

  • De Luís M, García-Cano MF, Cortina J, Raventós J, Gonzáles-Hidalgo JC, Sánchez JR (2001) Climatic trends, disturbances and short-term vegetation dynamics in a Mediterranean shrubland. Forest Ecol Manage 147:25–37

    Article  Google Scholar 

  • De Luís M, Gonzáles-Hidalgo JC, Raventós J (2003) Effects of fire and torrential rainfall on erosion in a Mediterranean gorse community. Land Degrad Dev 14:203–213

    Article  Google Scholar 

  • Dezileau L, Sabatier P, Blanchemanche P, Joly B, Swingedouw D, Cassou C, Castaings J, Martinez P, Von Grafenstei U (2010) Intense storm activity during the Little Ice Age on the French Mediterranean coast. Palaeogeogr Palaeoclimatol Palaeoecol 299:289–297

    Article  Google Scholar 

  • Diodato N, Bellocchi G (2007) Estimating monthly (R)USLE climate input in a Mediterranean region using limited data. J Hydrol 345:224–236

    Article  Google Scholar 

  • Diodato N, Bellocchi G (2009) Assessing and modelling changes in rainfall erosivity at different climate scales. Earth Surf Process Landf 34:969–980

    Article  Google Scholar 

  • Diodato N, Bellocchi G (2010a) Storminess and environmental changes in the Mediterranean central area. Earth Interact 14:1–16

    Article  Google Scholar 

  • Diodato N, Bellocchi G (2010b) MedREM, a rainfall erosivity model for the Mediterranean region. J Hydrol 387:119–127

    Article  Google Scholar 

  • Diodato N, Bellocchi G, Chirico GB, Romano N (2011) How the aggressiveness of rainfalls in the Mediterranean lands is enhanced by climate change. Clim Chang 108:591–599

    Article  Google Scholar 

  • Dostal P, Imbery F, Burger K, Seidel J (2011) Regional determination of historical heavy rain for reconstruction of extreme flood events. In: Kropp JP, Schellnhuber HJ (eds) In extremis: disruptive events and trends in climate and hydrology. Springer, Berlin, pp 91–102

    Google Scholar 

  • Durbin J, Watson GS (1950) Testing for serial correlation in least squares regression, I. Biometrika 37:409–428

    Google Scholar 

  • Durbin J, Watson GS (1951) Testing for serial correlation in least squares regression, II. Biometrika 38:159–179

    Google Scholar 

  • Fay P, Kaufman D, Nippert J, Carlisle J, Harper C (2008) Changes in grassland ecosystem function due to extreme rainfall events: implications for responses to climate change. Glob Chang Biol 14:1600–1608

    Article  Google Scholar 

  • Foster GR (2004) User’s reference guide. Revised Universal Soil Loss Equation version 2 (RUSLE2). National Sedimentation Laboratory, USDA-Agricultural Research Service, Washington, DC, p 418

    Google Scholar 

  • Gaume E (2006) Post flash-flood investigation – methodological note. Floodsite European research project, report D23.2, 62 pp. http://www.floodsite.net

  • Gaume E, Bain V, Bernardara P, Newinger O, Barbuc M, Bateman A, Blaškovicova L, Bloschl G, Borga M, Dumitrescu A, Daliakopoulos I, Garcia J, Irimescu A, Kohnova S, Koutroulis A, Marchi L, Matreata S, Medina V, Preciso E, Sempere-Torres D, Stancalie G, Szolgay J, Tsanis I, Velasco D, Viglione A (2009) A compilation of data on European flash floods. J Hydrol 367:70–78

    Article  Google Scholar 

  • Grace RC (2004) Temporal context in concurrent chains: I. Terminal-link duration. J Exp Anal Behav 81:215–237

    Article  Google Scholar 

  • Grove JM (1988) The Little Ice Age. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Holton JR (2004) An introduction to dynamic meteorology, vol 88, 4th edn, International geophysics series. Elsevier Academic Press, Burlington/San Diego/London

    Google Scholar 

  • Kalnay E, Kanamitsu M, Kistler R, Collins W, Deaven D, Gandin L, Iredell M, Saha S, White G, Woollen J, Zhu Y, Leetmaa A, Reynolds R, Chelliah M, Ebisuzaki W, Higgins W, Janowiak J, Mo KC, Ropelewski C, Wang J, Jenne R, Joseph D (1996) The NCEP/NCAR 40-year reanalysis project. Bull Am Meteorol Soc 77:437–470

    Article  Google Scholar 

  • Kerry R, Oliver MA (2008) Determining nugget:sill ratios of standardized variograms from aerial photographs to krige sparse soil data. Precis Agric 9:33–56

    Article  Google Scholar 

  • Knapp AK, Fay PA, Blair JM, Collins SL, Smith MD, Carlisle JD, Harper CW, Danner BT, Lett MS, McCarron JK (2002) Rainfall variability, carbon cycling, and plant species diversity in a mesic grassland. Science 298:2202–2205

    Article  Google Scholar 

  • Loureiro ND, Coutinho MD (2001) A new procedure to estimate the RUSLE EI30 index, based on monthly rainfall data and applied to the Algarve region, Portugal. J Hydrol 250:12–18

    Article  Google Scholar 

  • Marchi L, Borga M, Preciso E, Gaume E (2010) Characterisation of selected extreme flash floods in Europe and implications for flood risk management. J Hydrol 394:118–133

    Article  Google Scholar 

  • Matheron G (1971) The theory of regionalised variables and its applications. Les Cahiers du Centre de Morphologie Mathématique, Fascicule 5, Centre de Géostatistique, ENSMP, Fontainebleau

    Google Scholar 

  • Mendoza GA, Anderson AB, Gertner GZ (2002) Integrating multi-criteria analysis and GIS for land condition assessment: part I – evaluation and restoration of military training. J Geogr Inf Decis Anal 6:1–16

    Google Scholar 

  • Meusburger K, Steel A, Panagos P, Montanarella L, Alewell C (2012) Spatial and temporal variability of rainfall erosivity factor for Switzerland. Hydrol Earth Syst Sci 16:167–177

    Article  Google Scholar 

  • Michael A, Schmidt J, Enke W, Deutschländer T, Malitz G (2005) Impact of expected increase in precipitation intensities on soil loss – results of comparative model simulations. Catena 61:155–164

    Article  Google Scholar 

  • Mikos M, Jost D, Petkovsek G (2006) Rainfall and runoff erosivity in the alpine climate of north Slovenia: a comparison of different estimation methods. Hydrol Sci J J Sci Hydrol 51:115–126

    Article  Google Scholar 

  • Milly PCD, Wetherald RT, Dunne KA, Delworth TL (2002) Increasing risk of great floods in a changing climate. Nature 415:514–517

    Article  Google Scholar 

  • Molnar P, Burlando P, Ruf W (2002) Integrated catchment assessment of riverine landscape dynamics. Aquat Sci 64:129–140

    Article  Google Scholar 

  • Morgan RPC (2005) Soil erosion and conservation. Longman Group Limited, Essex

    Google Scholar 

  • Müller M, Kaspar M, Matschullat J (2009) Heavy rains and extreme rainfall-runoff events in Central Europe from 1951 to 2002. Nat Hazards Earth Syst Sci 9:441–450

    Article  Google Scholar 

  • Mulligan M (1998) Modelling the geomorphological impact of climatic variability and extreme events in a semiarid environment. Geomorphology 24:59–78

    Article  Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part I – a discussion of principles. J Hydrol 10:282–290

    Article  Google Scholar 

  • Nau R (2005) STATGRAPHICS V.5: overview & tutorial guide. Available at http://www.duke.edu/~rnau/sgwin5.pdf

  • Ramos MC, Mulligan M (2003) Impacts of climate variability and extreme events on soil hydrological processes. Geophys Res 5:92–115

    Google Scholar 

  • Reinhard M, Alexakis E, Rebetez M, Schlaepfer R (2003) Climate-soil-vegetation interaction: a case-study from the forest fire phenomenon in Southern Switzerland. Geophys Res 5:24–70

    Google Scholar 

  • Renard KG, Foster GR, Weesies GA, McCool DK, Yoder DC (1997) Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE), United States Department of Agriculture, Agriculture handbook no. 703. U.S. Dept. of Agriculture, Agricultural Research Service, Washington, DC, p 404

    Google Scholar 

  • Schmidt-Thomé P (2006) European Spatial Planning Observation Network ESPON, 127 p. Available at http://preventionweb.net/go/3827

  • Schmocker-Fackel P, Naef F (2010) Changes in flood frequencies in Switzerland since 1500. Hydrol Earth Syst Sci Discuss 7:529–560

    Article  Google Scholar 

  • Webster R, Oliver MA (2007) Geostatistics for environmental scientists, 2nd edn. Wiley, London, 315 p

    Book  Google Scholar 

  • Wei W, Chen L, Fu B (2009) Effects of rainfall change on water erosion processes in terrestrial ecosystems: a review. Prog Phys Geogr 33:307–318

    Article  Google Scholar 

  • Wessa P (2009) A framework for statistical software development, maintenance, and publishing within an open-access business model. Comput Stat 24:183–193

    Article  Google Scholar 

  • Willmott CJ, Legates DR (1991) Rising estimates of terrestrial and global precipitation. Clim Res 1:179–186

    Article  Google Scholar 

  • Willmott CJ, Matsuura K (2005) Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim Res 30:79–82

    Article  Google Scholar 

  • Wischmeier WH, Smith DD (1978) Predicting rainfall erosion losses: a guide to conservation planning, Agriculture handbook no. 537. USDA-SEA, US Government Printing Office, Washington, DC, p 58

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nazzareno Diodato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Diodato, N., Bellocchi, G., Meusburger, K., Buttafuoco, G. (2014). Modelling Long-Term Storm Erosivity Time-Series: A Case Study in the Western Swiss Plateau. In: Diodato, N., Bellocchi, G. (eds) Storminess and Environmental Change. Advances in Natural and Technological Hazards Research, vol 39. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7948-8_10

Download citation

Publish with us

Policies and ethics