Skip to main content

Organic Preservation of Biopolymers in Fossil Leaves

  • Chapter
  • First Online:
Biopolymers

Part of the book series: Topics in Geobiology ((TGBI,volume 38))

  • 689 Accesses

Abstract

This chapter investigates the morphology and chemical structure of fossil leaves from the Ardèche diatomite (Late Miocene, southeast France) and compares them to their modern equivalents. Chemical analyses of the fossil leaves revealed the presence of a recalcitrant (non-hydrolysable) geopolymer comprised of benzene derivatives, lignin-derived components, pristenes and an aliphatic component; the latter consists partly of fatty acyl subunits ranging in carbon number from C8 to C32 with an abundance of C16 and C18 units. Chemical degradation of the modern plants failed to reveal the presence of the aliphatic biomacromolecule cutan, thereby precluding selective preservation of this compound as the source for the aliphatic component of the fossil leaves. In contrast, C16 and C18 fatty acyl units are predominant in the cutin and phospholipid fatty acid (PLFA) fractions of the modern leaves, while C10 to C32 acid units are characteristic of the free fatty acid (FA) fraction of epicuticular waxes. However, TEM and SEM investigations of the fossils revealed no evidence for cuticle preservation, and while a contribution from cutin cannot be excluded, the aliphatic component of the fossil polymer is possibly derived instead from the in situ polymerisation of labile cell membrane lipids and free fatty acids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almendros G, González-Vila FJ, Martin F, Sanz J, Álvarez-Ramis C (1998) Appraisal of pyrolytic techniques on different forms of organic matter from a Cretaceous basement in Central Spain. Org Geochem 28:613–623

    Article  Google Scholar 

  • Almendros G, José Dorado J, González-Vila FJ, Martín F, Sanz J, Álvarez-Ramis C, Stuchlik L (1999) Molecular characterization of fossil organic matter in Glyptostrobuseuropaeus remains from the Orawa basin (Poland). Comparison of pyrolytic techniques. Fuel 78:745–752

    Article  Google Scholar 

  • Anderson KB, Winans RE (1991) The nature and fate of natural resins in the geosphere. I. Evaluation of pyrolysis-gas chromatography-mass spectrometry for the analysis of natural resins and resinites. Anal Chem 63:2901–2908

    Article  Google Scholar 

  • Berner RA (1989) Biogeochemical cycles of carbon and sulfur and their effect on atmosphere on phanerozoic time. Palaeogeogr Palaeoclimatol Palaeoecol 73:97–122

    Article  Google Scholar 

  • Bland HA, van Bergen PF, Carter JF, Evershed RP (1998) Early diagenetic transformations of proteins and polysaccharides in archaeological plant remains. In: Stankiewicz BA, van Bergen PF (eds) Nitrogen-containing macromolecules in the bio- and geosphere, vol 707, ACS symposium series

    Google Scholar 

  • Blokker P, Schouten S, van den Ende H, de Leeuw JW, Hatcher PG, SinningheDamsté JSS (1998) Chemical structure of algaenans from the fresh water algae Tetraedron minimum, Scenedesmuscommunis and Pediastrumboryanum. Org Geochem 29:1453–1468

    Article  Google Scholar 

  • Blokker P, Schouten S, de Leeuw JW, SinningheDamsté JSS, van den Ende H (2000) A comparative study of fossil and extant algaenans using ruthenium tetroxide degradation. Geochim Cosmochim Acta 64:2055–2065

    Article  Google Scholar 

  • Briggs DEG (1999) Molecular taphonomy of animal and plant cuticles: selective preservation and diagenesis. Philos Trans R Soc Lond B Biol Sci 354:7–16

    Article  Google Scholar 

  • Briggs DEG, Stankiewicz BA, Evershed RP (1998) The molecular preservation of fossil arthropod cuticles. Anc Biomol 2:135–146

    Google Scholar 

  • Challinor JM (1989) A pyrolysis-derivatization-gas chromatograph technique for the elucidation of some synthetic polymers. J Anal Appl Pyrolysis 16:323–333

    Article  Google Scholar 

  • Challinor JM (1991a) Structure determination of alkyd resins by simultaneous pyrolysis methylation. J Anal Appl Pyrolysis 18:233–244

    Article  Google Scholar 

  • Challinor JM (1991b) The scope of pyrolysis methylation reactions. J Anal Appl Pyrolysis 20:15–24

    Article  Google Scholar 

  • Clifford DJ, Carson DM, McKinney DE, Bortiatynski JM, Hatcher PG (1995) A new rapid technique for the characterization of lignin in vascular plants: thermochemolysis with tetramethylammonium hydroxide (TMAH). Org Geochem 23:169–175

    Article  Google Scholar 

  • Collinson ME, Mösle B, Finch P, Wilson R, Scott AC (1998) The preservation of plant cuticle in the fossil record: a chemical and microscopical investigation. Anc Biomol 2:251–265

    Google Scholar 

  • Collinson ME, Mösle B, Finch P, Wilson R, Scott AC (2000) Preservation of plant cuticles. Acta Palaeobot Suppl 2:629–632

    Google Scholar 

  • de Leeuw JW, Largeau C (1993) A review of macromolecular organic compounds that comprise living organisms and their role in kerogen, coal and petroleum formation. In: Engel MH, Macko SA (eds) Organic geochemistry: principles and applications, vol 11, Topics in geobiology. Springer, New York, pp 23–72

    Chapter  Google Scholar 

  • del Río JC, Gonzalez-Vila FJ, Martin F, Verdejo T (1994) Characterization of humic acids from low-rank coals by 13C NMR and pyrolysis-methylation. In: Formation of benzene carboxylic acid moieties during the coalification process. Org Geochem 22:885–891

    Article  Google Scholar 

  • deLeeuw JW, Baas J (1993) The behavior of esters in the presence of tetramethylammonium salts at elevated temperatures; flash pyrolysis or flash chemolysis? J Anal Appl Pyrolysis 26:175–184

    Article  Google Scholar 

  • Derenne S, Largeau C, Landais P, Rochdi A (1994) Spectroscopic features of Gloeocapsomorphaprisca colonies and of interstitial matrix in kukersite as revealed by transmission micro-FT-i.r.: location of phenolic moieties. Fuel 73:626–628

    Article  Google Scholar 

  • Deshmukh AP, Simpson AJ, Hatcher PG (2003) Evidence for cross-linking in tomato cutin using HR-MAS NMR spectroscopy. Phytochemistry 64:1163–1170

    Article  Google Scholar 

  • Eglinton G, Hamilton RJ (1967) Leaf epicuticular waxes. Science 156:1322–1334

    Article  Google Scholar 

  • Eglinton G, Gonzalez AG et al (1962) Hydrocarbon constituents of the wax coatings of plant leaves: a taxonomic survey. Phytochemistry 1:89–102

    Article  Google Scholar 

  • Fujii M, Hida M, Ono H, Tabata A, Matsumoto M (1986) Improvement of measuring method of saponification value on bees wax, etc. Nippon Koshohin Kagakkaishi 10:269–274

    Google Scholar 

  • Gatellier J-PLA, de Leeuw JW, Sinninghe Damsté JS, Derenne S, Largeau C, Metzger P (1993) A comparative study of macromolecular substances of a Coorongite and cell walls of the extant alga Botryococcusbraunii. Geochim Cosmochim Acta 57:2053–2068

    Article  Google Scholar 

  • Gelin F, Volkman JK, Largeau C, Derenne S, SinningheDamsté JS, de Leeuw JW (1999) Distribution of aliphatic, nonhydrolyzable biopolymers in marine microalgae. Org Geochem 30:147–159

    Article  Google Scholar 

  • Gillaizeau B, Derenne S, Largeau C, Berkaloff C, Rousseau B (1996) Source organisms and formation pathway of the kerogen of the Göynük Oil Shale (Oligocene, Turkey) as revealed by electron microscopy, spectroscopy and pyrolysis. Org Geochem 24:671–679

    Article  Google Scholar 

  • Goosens H, de Leeuw JW, Schenck PA, Brassell SC (1984) Tocopherols as likely precursors of pristane in ancient sediments and crude oils. Nature 312:440–442

    Article  Google Scholar 

  • Gupta NS, Pancost RD (2004) Biomolecular and physical taphonomy of angiosperm leaf during early decay: implications for fossilisation. Palaios 19:428–440

    Article  Google Scholar 

  • Hartgers WA, SinningheDamsté JS, de Leeuw JW (1992) Identification of C2–C4 alkylated benzenes in flash pyrolysates of kerogens, coals and asphaltenes. J Chromatogr A 606:211–220

    Article  Google Scholar 

  • Hartgers WA, SinningheDamsté JS, de Leeuw JW (1995) Curie-point pyrolysis of sodium salts of functionalized fatty acids. J Anal Appl Pyrolysis 34:191–217

    Article  Google Scholar 

  • Hatcher PG, Clifford DJ (1994) Flash pyrolysis and in situ methylation of humic acids from soil. Org Geochem 21:1081–1092

    Article  Google Scholar 

  • Hatcher PG, Minard RD (1995) Comment on the origin of benzenecarboxylic acids in pyrolysis methylation studies. Org Geochem 23:991–994

    Article  Google Scholar 

  • Hatcher PG, Nanny MA, Minard RD, Dible SD, Carson DM (1995) Comparison of two thermochemolytic methods for the analysis of lignin in decomposing wood: the CuO oxidation method and the method of thermochemolysis with tetramethylammonium hydroxide (TMAH). Org Geochem 23:881–888

    Article  Google Scholar 

  • Hold IM, Schouten S, Van der Gaast SJ, Damste JSS (2001) Origin of prist-1-ene and prist-2-ene in kerogen pyrolysates. Chem Geol 172:201–212

    Article  Google Scholar 

  • Kenney JF, Kutcherov VA, Bendeliani NA, Alekseev VA (2002) The evolution of multicomponent systems at high pressures: VI. The thermodynamic stability of the hydrogen-carbon system: the genesis of hydrocarbons and the origin of petroleum. Proc Natl Acad Sci U S A 99:10976–10981

    Article  Google Scholar 

  • Kok MD, Schouten S, Damste JSS (2000) Formation of insoluble, nonhydrolyzable, sulfur-rich macromolecules via incorporation of inorganic sulfur species into algal carbohydrates. Geochim Cosmochim Acta 64:2689–2699

    Article  Google Scholar 

  • Kolattukudy PE (1980) Biopolyester membranes of plants: cutin and suberin. Science 208:990–1000

    Article  Google Scholar 

  • Kolattukudy PE (1981) Structure, biosynthesis, and biodegradation of cutin and suberin. Ann Rev Plant Physiol 32:539

    Article  Google Scholar 

  • Kralert PG, Alexander R, Kagi RI (1995) An investigation of polar constituents in kerogen and coal using pyrolysis-gas chromatography-mass spectrometry with in situ methylation. Org Geochem 23:627–639

    Article  Google Scholar 

  • Landais P, Rochdi A, Largeau C, Derenne S (1993) Chemical characterization of torbanites by transmission micro-FTIR spectroscopy: origin and extent of compositional heterogeneities. Geochim Cosmochim Acta 57:2529–2539

    Article  Google Scholar 

  • Larter SR, Horsfield B (1993) Determination of structural components of kerogens by the use of analytical pyrolysis methods. Top Geobiol 11:271–287

    Google Scholar 

  • Logan GA, Boon JJ, Eglinton G (1993) Structural biopolymer preservation in Miocene leaf fossils from the clarkia site, Northern Idaho. Proc Natl Acad Sci U S A 90:2246–2250

    Article  Google Scholar 

  • Love GD, Snape CE, Fallick AE (1998) Differences in the mode of incorporation and biogenicity of the principal aliphatic constituents of a Type I oil shale. Org Geochem 28:797–811

    Article  Google Scholar 

  • Lyons PC, Zodrow EL, Orem WH (1992) Coalification of the cuticle and compressed leaf tissue of the Carboniferous seed fern Macroneuropteris (Neuropteris) scheutzeri- implications for coalification to the bituminous coal stage. Geol Soc Am Abstr Progr A163

    Google Scholar 

  • Martin F, Gonzalez-Vila FJ, del Río JC, Verdejo T (1994) Pyrolysis derivatization of humic substances 1.Pyrolysis of fulvic acids in the presence of tetramethylammonium hydroxide. J Appl Anal Pyrolysis 28:71–80

    Article  Google Scholar 

  • McKinney DE, Carson DM, Clifford DJ, Minard RD, Hatcher PG (1995) Off-line thermochemolysis versus flash pyrolysis for the in situ methylation of lignin: is pyrolysis necessary? J Appl Anal Pyrolysis 34:41–46

    Article  Google Scholar 

  • McKinney DE, Bortiatynski JM, Carson DM, Clifford DJ, de Leeuw JW, Hatcher PG (1996) Tetramethylammonium hydroxide thermochemolysis of the aliphatic biopolymer cutan: insights into the chemical structure. Org Geochem 24:641–650

    Article  Google Scholar 

  • Mösle B, Finch P, Collinson ME, Scott AC (1997) Comparison of modern and fossil plant cuticles by selective chemical extraction monitored by flash pyrolysis-gas chromatography-mass spectrometry and electron microscopy. J Anal Appl Pyrolysis 4041:585–597

    Article  Google Scholar 

  • Mösle B, Collinson ME, Finch P, Stankiewicz BA, Scott AC, Wilson R (1998) Factors influencing the preservation of plant cuticles: a comparison of morphology and chemical comparison of modern and fossil examples. Org Geochem 29:1369–1380

    Article  Google Scholar 

  • Nip M, Tegelaar EW, Brinkhuis H, de Leeuw JW, Schenk PA, Holloway PJ (1986) Analysis of modern and fossil plant cuticles by Curie point Py-GC and Curie point Py-GC-MS: recognition of a new, highly aliphatic and resistant biopolymer. Org Geochem 10:769–778

    Article  Google Scholar 

  • Padley FB, Gunstone FD, Harwood JL (1986) Leaf lipids. In: Gunstone FD, Harwood JL, Padley FB (eds) The lipid handbook. Chapman & Hall, London, UK

    Google Scholar 

  • Poirier N, Derenne S, Rouzaud J-N, Largeau C, Mariotti A, Balesdent J, Maquet J (2000) Chemical structure and sources of the macromolecular, resistant, organic fraction isolated from a forest soil (Lacadée, south-west France). Org Geochem 31:813–827

    Article  Google Scholar 

  • Ralph J, Hatfield RD (1991) Pyrolysis-GC-MS characterization of forage materials. J Agric Food Chem 39:1426–1437

    Article  Google Scholar 

  • Riboulleau A, Derenne S, Largeau C, Baudin F (2001) Origin of contrasting features and preservation pathways in kerogens from the Kashpir oil shales (Upper Jurassic, Russian Platform). Org Geochem 32:647–665

    Article  Google Scholar 

  • Riou B (1995) Les fossils des diatomites du Miocene superieur de la montagne d’ Andance (Ardeche, France). Géol Méditerr XXII:1–15

    Google Scholar 

  • Saiz-Jimenez C (1994) Analytical pyrolysis of humic substances: pitfalls limitations, and possible solutions. Environ Sci Technol 28:1773–1780

    Article  Google Scholar 

  • Schmidt HW, Schönherr J (1982) Development of plant cuticles: occurrence and role of non-ester bonds in cutin of Cliviaminiata Reg. leaves. Planta 156:380–384

    Article  Google Scholar 

  • Stankiewicz BA, Briggs DEG, Evershed RP, Flannery MB, Wuttke M (1997a) Preservation of chitin in 25-million-year-old fossils. Science 276:1541–1543

    Article  Google Scholar 

  • Stankiewicz BA, Briggs DEG, Evershed RP (1997b) Chemical composition of Paleozoic and Mesozoic fossil invertebrate cuticles as revealed by pyrolysis-gas chromatography/mass spectrometry. Energy Fuels 11:515–521

    Article  Google Scholar 

  • Stankiewicz BA, van Bergen PF (1998) Nitrogen and N-containing macromolecules in the bio- and geosphere: an introduction. In: Stankiewicz BA, van Bergen PF (eds) Nitrogen-containing macromolecules in the bio- and geosphere, ACS symposium series 707. Oxford University Press, New York, pp 1–12

    Chapter  Google Scholar 

  • Stankiewicz BA, Mösle B, Finch P, Collinson ME, Scott AC, Briggs DEG (1998a) Molecular taphonomy of arthropod and plant cuticles from the carboniferous of North America: implications for the origin of kerogen. J Geol Soc 155:453–462

    Article  Google Scholar 

  • Stankiewicz BA, Briggs DEG, Evershed RP, Miller RF, Bierstedt A (1998b) Chapter 12: Fate of chitin in quaternary and tertiary strata. In: van Bergen PF, Stankiewicz BA (eds) Fate of nitrogen containing molecules in the bio- and geosphere, ACS symposium series. Oxford University Press, New York, pp 212–224

    Chapter  Google Scholar 

  • Stankiewicz BA, Briggs DEG, Michels R, Collinson ME, Evershed RP (2000) Alternative origin of aliphatic polymer in kerogen. Geology 28:559–562

    Article  Google Scholar 

  • Tegelaar EW, de Leeuw JW, Derenne S, Largeau C (1989a) A reappraisal of Kerogen formation. Geochim Cosmochim Acta 53:3103–3106

    Article  Google Scholar 

  • Tegelaar EW, de Leeuw JW, Holloway PJ (1989b) Some mechanisms of flash pyrolysis of naturally occurring higher plant polyesters. J Anal Appl Pyrolysis 15:289–295

    Article  Google Scholar 

  • Tegelaar EW, Kerp H, Visscher H, Schenk PA, de Leeuw JW (1991) Bias of the paleobotanical record as a consequence of variations in the chemical composition of higher vascular plant cuticles. Paleobiology 17:133–144

    Google Scholar 

  • Tegelaar EW, Hollman G, van der Vegt P, de Leeuw JW, Holloway PJ (1995) Chemical characterization of the periderm tissue of some angiosperm species: recognition of an insoluble, non-hydrolyzable, aliphatic biomacromolecule (Suberan). Org Geochem 23(1995):239–251

    Article  Google Scholar 

  • Tissot B, Welte DH (1984) Petroleum formation and occurrence, 2nd edn. Springer, Berlin-Heidelberg

    Book  Google Scholar 

  • van Bergen PF (1999) Pyrolysis and chemolysis of fossil plant remains: applications to palaeobotany. In: Jones TP, Rowe NP (eds) Fossil plants and spores: modern techniques. Geological Society, London, pp 143–148

    Google Scholar 

  • van Bergen PF, Scott AC, Barrie PJ, de Leeuw JW, Collinson ME (1994) The chemical composition of Upper Carboniferous pteridosperm cuticles. Org Geochem 21:107–112

    Article  Google Scholar 

  • van Bergen PF, Collinson ME, Briggs DEG, de Leeuw JW, Scott AC, Evershed RP, Finch P (1995) Resistant biomacromolecules in the fossil record. Acta Bot Neerl 44:319–342

    Article  Google Scholar 

  • van Bergen PF, Flannery MB, Poulton PR, Evershed RP (1998) Organic geochemical studies from Rothamstead experimental station: III nitrogen-containing organic matter in soil from Geescroft Wilderness. In: Stankiewicz BA, van Bergen PF (eds) Nitrogen-containing macromolecules in the bio- and geosphere, vol 707, ACS symposium series. Oxford University Press, New York

    Google Scholar 

  • Walton TJ (1990) Waxes, cutin and suberin. In: Dey PM, Harborne J (eds) Methods in plant biochemistry, lipids, membranes and aspects of photobiology, vol 4. Academic, London, pp 105–159

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gupta, N.S. (2014). Organic Preservation of Biopolymers in Fossil Leaves. In: Biopolymers. Topics in Geobiology, vol 38. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7936-5_3

Download citation

Publish with us

Policies and ethics