Skip to main content

Agroecological Crop Protection in Organic Farming: Relevance and Limits

  • Chapter
  • First Online:

Abstract

Plant protection is one of the major issues in organic farming. Organic crop protection (OCP) strategies often rely on a limited number of methods that provide only partial control of pests and that induce lower yields and economic performances. As a result, farmers hesitate to adopt these strategies and doubts are cast on the ability of organic agriculture to feed the world. This chapter questions how agroecological concepts may contribute to OCP, while taking the different alternative schemes already developed to manage, integrate and design crop protection strategies into account. As demonstrated by a bibliographic analysis, Integrated pest management (IPM) remains the leading paradigm in crop protection. It also provides its foundational basis, giving priority to bioecological processes and alternative techniques to reduce pesticide use. Beyond IPM, agroecology is characterised by a holistic approach and the importance given to the design of a “healthy” agroecosystem. In practice, all these concepts are subject to various interpretations, and organic farming includes a variety of practices, ranging from intensive input-substitution to a comprehensive integrated approach. This paper provides key elements for crop protection in OF on the basis of the adaptation of the agroecological crop protection approach. Based on a successful case study of fruit fly management in OF in Reunion Island (France), we highlight three major pillars to design pest management strategies: sanitation, habitat manipulation and conservation biological control. Finally, in the field of crop protection, this paper shows that organic farming can be both a prototype for designing innovations and a source of practices to be extended to other types of agroecosystems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Altieri MA (1992) Sustainable agricultural-development in latin-america—exploring the possibilities. Agric Ecosyst Environ 39(1–2):1–21

    Article  Google Scholar 

  • Altieri MA, Nicholls CI (2000) Applying agroecological concepts to development of ecologically based pest management strategies. National Research Council, Washington DC

    Google Scholar 

  • Altieri MA, Rosset P (1999) Ten reasons why biotechnology will not ensure food security, protect the environment and reduce poverty in the developing world. In: Sherlock R, Moorey JD (eds) Ethical issues in biotechnology. Rowman & Littlefield

    Google Scholar 

  • Altieri MA (2005) The myth of coexistence: why transgenic crops are not compatible with agroecologically based systems of production. B Sci Technol Soc 25(4):361

    Article  Google Scholar 

  • Atiama-Nurbel T, Deguine JP (2010) Agroecological crop protection in organic agriculture: the case of Tephritid fruit flies in Reunion Island, international conference on organic agriculture in scope of environmental problems. Famagusta, Cyprus, pp 107–109

    Google Scholar 

  • Augusseau X, Deguine JP, Douraguia E, Duffourc V, Gourlay J, Insa G, Lasne A, Le Roux K, Poulabssia E, Rousse P, Roux E, Suzanne W, Tilma P, Trules E (2011) Gamour, l’agroécologie en action à la Réunion. Phytoma, pp 33–37

    Google Scholar 

  • Biondi A, Desneux N, Siscaro G, Zappala L (2012) Using organic-certified rather than synthetic pesticides may not be safer for biological control agents: Selectivity and side effects of 14 pesticides on the predator Orius laevigatus. Chemosphere 87(7):803–812

    Article  PubMed  CAS  Google Scholar 

  • Bird GW, Grieshop M, Hepperly P, Moyer J (2009) Climbing Mt. organic: an ecological approach. In: Francis C (ed) Organic farming: the ecological system. American society of agronomy, crop science society of America, Soil science society of america, pp 197–214

    Google Scholar 

  • Boisclair J, Estevez B (2006) Insect pest management in organic agriculture: acting in harmony with complexity. Phytoprotection 87(2):83–90

    Article  Google Scholar 

  • Daniel C, Pfammatter W, Kehrli P, WYSS E (2005) Processed kaolin as an alternative insecticide against the European pear sucker, Cacopsylla pyri (L.). J Appl Entomol 129(7):363–367

    Article  CAS  Google Scholar 

  • Darnhofer I, Lindenthal T, Bartel-Kratochvil R, Zollitsch W (2010) Conventionalisation of organic farming practices: from structural criteria towards an assessment based on organic principles. A review. Agron Sustain Dev 30:67–81. DOI: http://dx.doi.org/10.1051/agro/2009011

  • Dayan FE, Cantrell CL, Duke SO (2009) Natural products in crop protection. Bioorg Med Chem 17:4022–4034. DOI: 10.1016/j.bmc.2009.01.046

    Article  PubMed  CAS  Google Scholar 

  • Deguine JP, Ferron P (2006) Crop protection, preservation of biodiversity, respect of the environment. Cah Agric 15(3):307–311

    Google Scholar 

  • Deguine JP, Ferron P, Russell D (2008) Sustainable pest management for cotton production. A review. Agron Sustain Dev 28(1):113–137

    Article  Google Scholar 

  • Deguine JP, Ferron P, Russell D (eds) (2009) Crop protection: from agrochemistry to agroecology. Science, Enfield, p 378.

    Google Scholar 

  • Deguine JP, Atiama-Nurbel T, Quilici S (2011) Net choice is key to the augmentorium technique of fruit fly sequestration and parasitoid release. Crop Prot 30:198–202. DOI: 10.1016/j.cropro.2010.10.007

    Article  Google Scholar 

  • Deguine J-P, Atiama-Nurbel T, Douraguia E, Chiroleu F, Quilici S (2012a) Species diversity within a community of the Cucurbit fruit flies Bactrocera cucurbitae, Dacus ciliatus and Dacus demmerezi roosting in corn borders near cucurbit production areas of Reunion Island. J Insect Sci 12(32). insectscience.org/12.32

    Google Scholar 

  • Deguine J-P, Douraguia E., Atiama-Nurbel T., Chiroleu F., Quilici S (2012b) Cage study of spinosad-based bait efficacy on Bactrocera cucurbitae, Dacus ciliatus and Dacus demmerezi in Reunion Island. J Econ Entomol 105:1358–1365

    Article  CAS  Google Scholar 

  • Deguine J-P, Rousse P, Le Roux K, Augusseau X (2011) Agroecological crop protection in Reunion: first results in commercial farm conditions. Commun Agric Appl Biol Sci 76:107–118

    Google Scholar 

  • Delate K (2002) Using an agroecological approach to farming systems research. Horttechnology 12(3):345–354

    Google Scholar 

  • Delate K, Friedrich H (2004) Organic apple and grape performance in the Midwestern US. In: Bertschinger L, Anderson JD (coord.) (eds) Sustainability of horticultural systems in the 21st century. Leuven 1: International Society Horticultural Science, pp 309–320

    Google Scholar 

  • Drinkwater LE (2009) Ecological knowledge:foundation for sustainable organic agriculture. In: Francis C (ed) Organic farming: the ecological system. American society of agronomy, crop science society of America, soil science society of America, pp 19–47

    Google Scholar 

  • Ehler LE (2006) Integrated pest management (IPM) definition, historical development and implementation, and the other IPM. Pest Manag Sci 62:787–789. DOI: 10.1002/ps.1247

    Article  PubMed  CAS  Google Scholar 

  • Elliot SL, Mumford JD (2002) Organic, integrated and conventional apple production: why not consider the middle ground? Crop Prot 21(5):427–429.

    Article  Google Scholar 

  • FAO/WHO Codex Alimentarius Commission (1999) Organic agriculture. Committee on Agriculture, Rome

    Google Scholar 

  • Fernandes VC, Domingues VF, De Freitas V, Delerue-Matos C, Mateus N (2012) Strawberries from integrated pest management and organic farming: phenolic composition and antioxidant properties. Food Chem 134(4):1926–1931

    Article  PubMed  CAS  Google Scholar 

  • Ferron P, Deguine JP (2005) Crop protection, biological control, habitat management and integrated farming. A review. Agron Sustain Dev 25:17–24. DOI: 10.1051/agro:2004050

    Article  Google Scholar 

  • Francis C (2009a) Education in organic farming and food systems. In: Francis C (ed) Organic farming: the ecological system, American society of agronomy, crop science society of America. Soil Science Society of America, pp 283–299

    Google Scholar 

  • Francis C (Eds) (2009b) Organic farming: the ecological system. American Society of Agronomy, Inc, Madison

    Google Scholar 

  • Furlong MJ, Zalucki MP (2010) Exploiting predators for pest management: the need for sound ecological assessment. Entomol Exp Appl 135(3):225–236.

    Article  Google Scholar 

  • Garratt MPD, Wright DJ, Leather SR (2011) The effects of farming system and fertilisers on pests and natural enemies: A synthesis of current research. Agricu Ecosyst Environ 141(3–4):261–270

    Article  Google Scholar 

  • Gliessman SR (Eds) (2007) Agroecology: the ecology of sustainable food systems, CRC Press, pp 384

    Google Scholar 

  • Guthman J (2004) The trouble with ‘organic lite’ in California: A rejoinder to the ‘conventionalisation’ debate. Sociol Ruralis 44:301–316

    Article  Google Scholar 

  • Harper JL (1974) Agricultural ecosystems. Agro-Ecosyst 1:1–6. DOI: 10.1016/0304–3746(74)90002-x

    Article  Google Scholar 

  • Hill SB, Vincent C, Chouinard G (1999) Evolving ecosystems approaches to fruit insect pest management. Agric Ecosyst Environ 73:107–110

    Article  Google Scholar 

  • Hill SB (2014) Considerations for enabling the ecological redesign of organic and conventional agriculture: a sociology and psychosocial perspective. In: Bellon S, Penvern S (eds) Organic agriculture, prototype for systainable agricultures. Springer, Chap. 22, pp 401–422

    Google Scholar 

  • Holland JM, Birkett T, Southway S (2009) Contrasting the farm-scale spatio-temporal dynamics of boundary and field overwintering predatory beetles in arable crops. BioControl 54(1):19–33

    Article  Google Scholar 

  • Howard A (1943) An agricultural testament. Oxford University Press, p 228

    Google Scholar 

  • Jacobson SK, Sieving KE, Jones GA, Van Doorn A (2003) Assessment of farmer attitudes and behavioral intentions toward bird conservation on organic and conventional Florida farms. Conserv Biolo 17(2):595–606

    Article  Google Scholar 

  • Kogan M (1998) Integrated pest management: historical perspectives and contemporary developments. Ann Rev Entomol 43:243–270. DOI: doi:10.1146/annurev.ento.43.1.243

    Article  CAS  Google Scholar 

  • Kogan M, Hilton RJ (2009) Conceptual framework for integrated pest management (IPM) of tree-fruit pests. In: Aluja M et al (eds) Biorational tree-fruit pest management. CABI, pp 1–31

    Google Scholar 

  • Krebs JR, Wilson JD, Bradbury RB, Siriwardena GM (1999) The second silent spring? Nature 400:611–612

    Article  CAS  Google Scholar 

  • Kremen C, Miles A (2012) Ecosystem services in biologically diversified versus conventional farming systems: benefits, externalities, and trade-offs. Ecol Soc 17(4):40

    Google Scholar 

  • Lamine C (2011) Transition pathways towards a robust ecologization of agriculture and the need for system redesign. Cases from organic farming and IPM. J Rural Stud 27:209–219. DOI: 10.1016/j.jrurstud.2011.02.001

    Article  Google Scholar 

  • Lampkin N (1990) Organic farming. Farming Press, Ipswich

    Google Scholar 

  • Letourneau DK, Goldstein B (2001) Pest damage and arthropod community structure in organic vs. conventional tomato production in California. J Appl Ecol 38:557–570. DOI: 10.1046/j.1365–2664.2001.00611.x

    Article  Google Scholar 

  • Lewis WJ, vanLenteren JC, Phatak SC, Tumlinson JH (1997) A total system approach to sustainable pest management. Proceedings of the national academy of sciences of the United States of America 94:12243–12248

    Google Scholar 

  • Lotter DW (2003) Organic agriculture. J Sustain Agricu 21:59–128

    Article  Google Scholar 

  • Malezieux E (2012) Designing cropping systems from nature. Agron Sustain Dev 32(1):15–29

    Article  Google Scholar 

  • Mayes MA, Thompson G.D., Husband B, Miles MM (2003) Spinosad toxicity to pollinators and associated risk, reviews of environmental contamination and toxicology, vol 179. Springer, New York, pp 37–71

    Book  Google Scholar 

  • McQuate GT, Vargas RI (2007) Assessment of attractiveness of plants as roosting sites for the melon fly, Bactrocera cucurbitae, and oriental fruit fly, Bactrocera dorsalis. J Insect Sci 7:57

    Article  PubMed Central  PubMed  Google Scholar 

  • Mcsorley R (2002) Nematode and insect management in transitional agricultural systems. Horttechnology 12(4):597–600

    Google Scholar 

  • Mena Y, Nahed J, Ruiz FA, Sanchez-Munoz JB, Ruiz-Rojas JL, Castel JM (2012) Evaluating mountain goat dairy systems for conversion to the organic model, using a multicriteria method. Animal 6(4):693–703.

    Article  PubMed  CAS  Google Scholar 

  • Mumford J D (1992) Economics of integrated pest-control in protected crops. Pestic Sci 36(4):379–383

    Article  Google Scholar 

  • Mladenova R, Shtereva D (2009) Pesticide residues in apples grown under a conventional and integrated pest management system. Food Additives and Contaminants Part A-Chemistry Analysis Control Exposure & Risk Assessment 26(6):854–858

    Google Scholar 

  • Mzoughi N (2011) Farmers adoption of integrated crop protection and organic farming: Do moral and social concerns matter? Ecol Econ 70(8):1536–1545

    Article  Google Scholar 

  • Nicholls CI, Altieri MA (1997) Conventional agricultural development models and the persistence of the pesticide treadmill in Latin America. Int J Sustain Dev World Ecol 4(2):93–111

    Article  Google Scholar 

  • Peck GM, Merwin IA, Brown MG, Agnello AM (2010) Integrated and organic fruit production systems for ‘liberty’ apple in the northeast United States: a systems-based evaluation. Hortscience 45(7):1038–1048

    Google Scholar 

  • Penvern S, Bellon S, Fauriel J, Sauphanor B (2010) Peach orchard protection strategies and aphid communities: Towards an integrated agroecosystem approach. Crop Prot 29:1148–1156. DOI: 10.1016/j.cropro.2010.06.010

    Article  Google Scholar 

  • Peterson G, Cunningham S, Deutsch L, Erickson J, Quinlan A, Raez-Luna E, Tinch R, Troell M, Woodbury P, Zens S (2000) The risks and benefits of genetically modified crops: A multidisciplinary perspective. Conserv Ecol 4(1):13

    Google Scholar 

  • Ponce NLC (2007) Evaluation of knowledge agroecologiques in organic and conventional horticulturists of the north zone of Cartago, Costa Rica. Cuadernos De Desarrollo Rural 3(58):37–48

    Google Scholar 

  • Rajapakse R, BCPC (2000) The management of major insect pests Bactocera cucurbitaceae and Aulacaphora spp. in cucurbits under 3 intensive systems: Integrated chemical and organic agriculture in Southern Sri Lanka. Bcpc Conference: Pests & Diseases 2000, vols 1–3, Proceedings. British Crop Protection Council, Farnham, p 981–985

    Google Scholar 

  • Ratnadass A, Fernandes P, Avelino J, Habib R (2012) Plant species diversity for sustainable management of crop pests and diseases in agroecosystems: a review. Agron Sustain Dev 32(1):273–303

    Article  Google Scholar 

  • Rodriguez E, Gonzalez B, Campos M (2012) Natural enemies associated with cereal cover crops in olive groves. Bulletin of Insectology 65(1):43–49

    Google Scholar 

  • Rosset PM, Altieri MA (1997) Agroecology versus input substitution: a fundamental contradiction of sustainable agriculture. Soc Nat Resour 10:283–295

    Article  Google Scholar 

  • Ryckewaert P, Deguine JP, Brevault T, Vayssieres JF (2010) Fruit flies (Diptera: Tephritidae) on vegetable crops in Reunion Island (Indian Ocean): state of knowledge, control methods and prospects for management. Fruits 65:113–130. DOI: 10.1051/fruits/20010006

    Article  Google Scholar 

  • Sauphanor B, Simon S, Boisneau C, Capowiez Y, Rieux R, Bouvier JC, Defrance H, Picard C, Toubon JF (2009) Protection phytosanitaire et biodiversité en agriculture biologique. Le cas des vergers de pommiers. Innovations Agronomiques 4:217–228

    Google Scholar 

  • Sharma OP, Bhosle BB, Kamble KR, Bhede BV, Seeras NR (2011) Management of pigeonpea pod borers with special reference to pod fly (Melanagromyza obtusa). Indian J Agric Sci 81(6):539–543

    Google Scholar 

  • Simon S, Rusch A, Wyss E, Sarthou JP (2014) Organic farming as an inspirational model for developing conservation biocontrol. In: Bellon S, Penvern S (eds) Organic farming, prototype for sustainable agricultures. Springer, Chap. 5, pp 83–105

    Google Scholar 

  • Speiser B, Tamm L and Weibel FP (2014) Regulatory framework for plant protection in organic farming. In: Bellon S, Penvern S (eds) “Organic agriculture, prototype for sustainable agricultures”, Chap. 4, pp 65–82

    Google Scholar 

  • Tscharntke T, Clough Y, Wanger TC, Jackson L, Motzke I, Perfecto I, Vandermeer J, Whitebread A (2012) Global food security, biodiversity conservation and the future of agricultural intensification. Biol Cons 151(1):53–59

    Article  Google Scholar 

  • Trewavas A (2001) Urban myths of organic farming. Nature 410:409–410

    Article  PubMed  CAS  Google Scholar 

  • Valenzuela HR, Defrank J (1995) Agroecology of tropical underground crops for small-scale agriculture. Cr Rev Plant Sci 14(3):213–238

    Article  Google Scholar 

  • Vanbuskirk P.D., Hilton R.J., Benbow J., Basile S (2008) Mating disruption and Cydia pomonella Granulosis virus for control of codling moth in pear. In: Webster AD, Oliveira CM (coord.) (eds) Proceedings of the Xth international pear symposium, vols 1–2. Leuven 1: International Society Horticultural Science, p 947–953

    Google Scholar 

  • Vandermeer J (1995) The ecological basis of alternative agriculture. Ann Rev Ecol Syst 26:201–224

    Article  Google Scholar 

  • Vanloqueren G, Baret PV (2009) How agricultural research systems shape a technological regime that develops genetic engineering but locks out agroecological innovations. Res Policy 38:971–983. DOI: 10.1016/j.respol.2009.02.008

    Article  Google Scholar 

  • Veyssières JF (1999) Les relations plantes-insectes chez les Dacini (Diptera-Tephritidae) ravageurs des Cucurbitaceae à La Réunion. University Paris XII, Paris

    Google Scholar 

  • Wezel A, Bellon S, Dore T, Francis C, Vallod D, David C (2009) Agroecology as a science, a movement and a practice. A review. Agron Sustain Dev 29:503–515. DOI: 10.1051/agro/2009004

    Article  Google Scholar 

  • White IM, Elson-Harris MM (1992) Fruit flies of economic significance: their identification and bionomic. CAB International, Wallingford

    Google Scholar 

  • Whittaker J, Courtial JP, Law J (1989) Creativity and conformity in science—titles, keywords and co-word analysis. Soc Stud Sci 19:473–496

    Article  Google Scholar 

  • Wyss E, Luka H, Pfiffner L, Schlatter C, Gabriela U, Daniel C (2005) Approaches to pest management in organic agriculture: a case study in European apple orchards “IPM in Organic Systems”, XXII International Congress of Entomology, Brisbane, Australia

    Google Scholar 

  • Xu QC, Fujiyama S, Xu HL (2011) Biological pest control by enhancing populations of natural enemies in organic farming systems. J Food Agric Environ 9(2):455–463

    Google Scholar 

  • Zehnder G, Gurr GM, Kuhne S, Wade MR, Wratten SD, Wyss E (2007) Arthropod pest management in organic crops. Ann Rev Entomol 52:57–80

    Article  CAS  Google Scholar 

  • Zinati GM (2002) Transition from conventional to organic farming systems: I. Challenges, recommendations, and guidelines for pest management. Horttechnology 12(4):606–610

    Google Scholar 

Download references

Acknowledgments

We would like to thank all of the readers who helped us to improve the quality of this paper and who contributed to the definition of each of the concepts herein. We are also grateful to Guillaume Ollivier for sharing his knowledge about bibliometry with us and his invaluable help in these discussions.

The case study relies on a vast effort provided by many people who unfortunately cannot all be mentioned here, although we acknowledge each and every one of them. We particularly thank Marie-Ludders Moutoussamy, Cédric Ajaguin Soleyen, Toulassi Atiama-Nurbel and Pascal Rousse for technical assistance in conducting experiments. We also acknowledge Dow AgroSciences (France) for permission to conduct trials on Synéïs-appât. Gamour was operated by a fruitful collaboration between ASP, DAAF, the Chamber of Agriculture of Reunion Island, CIRAD, Farre Reunion, FDGDON, GAB, Université de La Réunion, Takamaka Industries, SCA Terres Bourbon and Vivéa Réunion. Funding for this research was provided by Odeadom (Office de Développement de l’Economie Agricole des Départements d’Outre-mer), the European Commission, the Regional Council of Reunion Island, the General Council of Reunion Island, CIRAD and the French Ministry of Food, Agriculture and Fishing through a CAS-DAR grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Philippe Deguine .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Deguine, JP., Penvern, S. (2014). Agroecological Crop Protection in Organic Farming: Relevance and Limits. In: Bellon, S., Penvern, S. (eds) Organic Farming, Prototype for Sustainable Agricultures. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7927-3_6

Download citation

Publish with us

Policies and ethics