The Ehlers-Danlos Syndrome

  • Fransiska Malfait
  • Anne De PaepeEmail author
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 802)


The Ehlers-Danlos Syndromes comprise a heterogeneous group of diseases, which are characterized by fragility of the soft connective tissues and widespread manifestations in skin, ligaments and joints, blood vessels and internal organs. The clinical spectrum varies from mild skin and joint hyperlaxity to severe physical disability and life-threatening vascular complications. The current Villefranche classification recognizes six subtypes, most of which are linked to mutations in one of the genes encoding fibrillar collagen proteins or enzymes involved in post-translational modification of these proteins. Establishing the correct EDS subtype has important implications for genetic counselling and management and is supported by specific biochemical and molecular investigations. Over the last years, the characterisation of several new EDS variants has broadened insights into the molecular pathogenesis of EDS by implicating genetic defects in the biosynthesis of other extracellular matrix molecules, such as proteoglycans and tenascin-X, or genetic defects in molecules involved in intracellular trafficking, secretion and assembly of extracellular matrix proteins.


Ehlers-Danlos syndrome (EDS) Villefranche classification Six subtypes Non-functional COL5A1 allele COL3A1 gene Beighton hypermobility score COL1A1 and COL1A2 mutations 



Adducted Thumb Clubfoot Syndrome


Extracellular Matrix


Ehlers-Danlos Syndrome


Endoplasmic Reticulum




Joint Hypermobility Syndrome




  1. 1.
    Beighton P et al (1998) Ehlers-Danlos syndromes: revised nosology, Villefranche, 1997. Ehlers- Danlos National Foundation (USA) and Ehlers-Danlos Support Group (UK). Am J Med Genet 77(1):31–37PubMedCrossRefGoogle Scholar
  2. 2.
    Smith SM, Birk DE (2010) Focus on molecules: collagens V and XI. Exp Eye Res 2012 May; 98(1): 105–106Google Scholar
  3. 3.
    Andrikopoulos K et al (1995) Targeted mutation in the col5a2 gene reveals a regulatory role for type V collagen during matrix assembly. Nat Genet 9(1):31–36PubMedCrossRefGoogle Scholar
  4. 4.
    Toriello HV et al (1996) A translocation interrupts the COL5A1 gene in a patient with Ehlers- Danlos syndrome and hypomelanosis of Ito. Nat Genet 13(3):361–365PubMedCrossRefGoogle Scholar
  5. 5.
    Wenstrup RJ et al (1996) A splice-junction mutation in the region of COL5A1 that codes for the carboxyl propeptide of pro alpha 1(V) chains results in the gravis form of the Ehlers-Danlos syndrome (type I). Hum Mol Genet 5(11):1733–1736PubMedCrossRefGoogle Scholar
  6. 6.
    De Paepe A et al (1997) Mutations in the COL5A1 gene are causal in the Ehlers-Danlos syndromes I and II. Am J Hum Genet 60(3):547–554PubMedCentralPubMedGoogle Scholar
  7. 7.
    Schwarze U et al (2000) Null alleles of the COL5A1 gene of type V collagen are a cause of the classical forms of Ehlers-Danlos syndrome (types I and II). Am J Hum Genet 66(6):1757–1765PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Wenstrup RJ et al (2000) COL5A1 haploinsufficiency is a common molecular mechanism underlying the classical form of EDS. Am J Hum Genet 66(6):1766–1776PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Malfait F et al (2005) The molecular basis of classic Ehlers-Danlos syndrome: a comprehensive study of biochemical and molecular findings in 48 unrelated patients. Hum Mutat 25(1):28–37PubMedCrossRefGoogle Scholar
  10. 10.
    Symoens S et al (2009) COL5A1 signal peptide mutations interfere with protein secretion and cause classic Ehlers-Danlos syndrome. Hum Mutat 30(2):E395–E403PubMedCrossRefGoogle Scholar
  11. 11.
    Symoens S et al (2011) A novel splice variant in the N-propeptide of COL5A1 causes an EDS phenotype with severe kyphoscoliosis and eye involvement. PLoS One 6(5):e20121PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Symoens S et al (2012) Comprehensive molecular analysis demonstrates type V collagen mutations in over 90% of patients with classic EDS and allows to refine diagnostic criteria. Hum Mutat 33(10):1485–1493PubMedCrossRefGoogle Scholar
  13. 13.
    Beighton P, Solomon L, Soskolne CL (1973) Articular mobility in an African population. Ann Rheum Dis 32(5):413–418PubMedCrossRefGoogle Scholar
  14. 14.
    Rombaut L et al (2010) Musculoskeletal complaints, physical activity and health-related quality of life among patients with the Ehlers-Danlos syndrome hypermobility type. Disabil Rehabil 32(16):1339–1345PubMedCrossRefGoogle Scholar
  15. 15.
    Rombaut L et al (2011) Impairment and impact of pain in female patients with Ehlers-Danlos syndrome: a comparative study with fibromyalgia and rheumatoid arthritis. Arthritis Rheum 63(7):1979–1987PubMedCrossRefGoogle Scholar
  16. 16.
    Rombaut L et al (2010) Joint position sense and vibratory perception sense in patients with Ehlers-Danlos syndrome type III (hypermobility type). Clin Rheumatol 29(3):289–295PubMedCrossRefGoogle Scholar
  17. 17.
    Rombaut L et al (2012) Muscle mass, muscle strength, functional performance, and physical impairment in women with the hypermobility type of Ehlers-Danlos syndrome. Arthritis Care Res (Hoboken) 64(10):1584–1592CrossRefGoogle Scholar
  18. 18.
    Hausser I, Anton-Lamprecht I (1994) Differential ultrastructural aberrations of collagen fibrils in Ehlers- Danlos syndrome types I-IV as a means of diagnostics and classification. Hum Genet 93(4):394–407PubMedCrossRefGoogle Scholar
  19. 19.
    Zweers MC et al (2003) Haploinsufficiency of TNXB is associated with hypermobility type of Ehlers-Danlos syndrome. Am J Hum Genet 73(1):214–217PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Schalkwijk J et al (2001) A recessive form of the Ehlers-Danlos syndrome caused by tenascin-X deficiency. N Engl J Med 345(16):1167–1175PubMedCrossRefGoogle Scholar
  21. 21.
    Dalgleish R (1998) The human collagen mutation database 1998. Nucleic Acids Res 26(1):253–255PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Schwarze U et al (2001) Haploinsufficiency for one COL3A1 allele of type III procollagen results in a phenotype similar to the vascular form of Ehlers-Danlos syndrome, Ehlers-Danlos syndrome type IV. Am J Hum Genet 69(5):989–1001PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Leistritz DF et al (2011) COL3A1 haploinsufficiency results in a variety of Ehlers-Danlos syndrome type IV with delayed onset of complications and longer life expectancy. Genet Med 13(8):717–722PubMedCrossRefGoogle Scholar
  24. 24.
    Palmeri S et al (2003) Neurological presentation of Ehlers-Danlos syndrome type IV in a family with parental mosaicism. Clin Genet 63(6):510–515PubMedCrossRefGoogle Scholar
  25. 25.
    Milewicz DM et al (1993) Parental somatic and germ-line mosaicism for a multiexon deletion with unusual endpoints in a type III collagen (COL3A1) allele produces Ehlers-Danlos syndrome type IV in the heterozygous offspring. Am J Hum Genet 53(1):62–70PubMedCentralPubMedGoogle Scholar
  26. 26.
    Kontusaari S et al (1992) Substitution of aspartate for glycine 1018 in the type III procollagen (COL3A1) gene causes type IV Ehlers-Danlos syndrome: the mutated allele is present in most blood leukocytes of the asymptomatic and mosaic mother. Am J Hum Genet 51(3):497–507PubMedCentralPubMedGoogle Scholar
  27. 27.
    Richards AJ et al (1992) A single base mutation in the gene for type III collagen (COL3A1) converts glycine 847 to glutamic acid in a family with Ehlers-Danlos syndrome type IV. An unaffected family member is mosaic for the mutation. Hum Genet 89(4):414–418PubMedCrossRefGoogle Scholar
  28. 28.
    Pinnell SR et al (1972) A heritable disorder of connective tissue. Hydroxylysine-deficient collagen disease. New Engl J Med 286(19):1013–1020PubMedCrossRefGoogle Scholar
  29. 29.
    Yeowell HN, Walker LC, Neumann LM (2005) An Ehlers-Danlos syndrome type VIA patient with cystic malformations of the meninges. Eur J Dermatol 15(5):353–358PubMedGoogle Scholar
  30. 30.
    Giunta C, Randolph A, Steinmann B (2005) Mutation analysis of the PLOD1 gene: an efficient multistep approach to the molecular diagnosis of the kyphoscoliotic type of Ehlers-Danlos syndrome (EDS VIA). Mol Genet Metab 86(1–2):269–276PubMedCrossRefGoogle Scholar
  31. 31.
    Abu A et al (2008) Deleterious mutations in the Zinc-Finger 469 gene cause brittle cornea syndrome. Am J Hum Genet 82(5):1217–1222PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Burkitt Wright EM et al (2011) Mutations in PRDM5 in brittle cornea syndrome identify a pathway regulating extracellular matrix development and maintenance. Am J Hum Genet 88(6):767–777PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Meani N et al (2009) The tumor suppressor PRDM5 regulates Wnt signaling at early stages of zebrafish development. PLoS One 4(1):e4273PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Steinmann B, Royce P, Superti-Furga A (2002) The Ehlers-Danlos syndrome. In: Royce P, Steinmann B (eds) Connective tissue and its heritable disorders. Wiley-Liss, New York, pp 431–523CrossRefGoogle Scholar
  35. 35.
    Malfait F et al (2010) Musculocontractural Ehlers-Danlos Syndrome (former EDS type VIB) and adducted thumb clubfoot syndrome (ATCS) represent a single clinical entity caused by mutations in the dermatan-4-sulfotransferase 1 encoding CHST14 gene. Hum Mutat 31(11):1233–1239PubMedCrossRefGoogle Scholar
  36. 36.
    Kosho T et al (2010) A new Ehlers-Danlos syndrome with craniofacial characteristics, multiple congenital contractures, progressive joint and skin laxity, and multisystem fragility-related manifestations. Am J Med Genet A 152A(6):1333–1346PubMedGoogle Scholar
  37. 37.
    Miyake N et al (2010) Loss-of-function mutations of CHST14 in a new type of Ehlers-Danlos syndrome. Hum Mutat 31(8):966–974PubMedCrossRefGoogle Scholar
  38. 38.
    Shimizu K et al (2011) Delineation of dermatan 4-O-sulfotransferase 1 deficient Ehlers-Danlos syndrome: observation of two additional patients and comprehensive review of 20 reported patients. Am J Med Genet A 155A(8):1949–1958PubMedCrossRefGoogle Scholar
  39. 39.
    Quentin E et al (1990) A genetic defect in the biosynthesis of dermatan sulfate proteoglycan: galactosyltransferase I deficiency in fibroblasts from a patient with a progeroid syndrome. Proc Natl Acad Sci U S A 87(4):1342–1346PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Malfait F, Kariminejad A, Van Damme T, Gauche C, Syx D, Merhi-Soussi F, Gulberti S, Symoens S, Vanhauwaert S, Willaert A, Bozorgmehr B, Kariminejad MH, Ebrahimiadib N, Hausser I, Huysseune A, Fournel-Gigleux S, De Paepe A (2013) Defective initiation of glycosaminoglycan synthesis due to B3GALT6 mutations causes a pleiotropic Ehlers-Danlos syndrome-like connective tissue disorder. Am J Hum Genet 2013 May 7 (E-pub ahead of print)Google Scholar
  41. 41.
    Nakajima M, Mizumoto S, Miyake N, Kogawa R, Iida A, Ito H, Kitoh H, Hirayama A, Mitsubuchi H, Miyazaki O, Kosaki R, Horikawa R, Lai A, Mendoza-Londono R, Dupuis L, Chitayat D, Howard A, Leal GF, Cavalcanti D, Tsurusaki Y, Saitsu H, Watanabe S, Lausch E, Unger S, Bonafé L, Ohashi H, Superti-Furga A, Matsumoto N, Sugahara K, Nishimura G, Ikegawa S (2013) Mutations in B3GALT6, which encodes a glycosaminoglycan linker region enzyme, cause a spectrum of skeletal and connective tissue disorders. Am J Hum Genet 2013 May 7 (E-pub ahead of print)Google Scholar
  42. 42.
    Giunta C et al (2008) Spondylocheiro dysplastic form of the Ehlers-Danlos syndrome–an autosomal-recessive entity caused by mutations in the zinc transporter gene SLC39A13. Am J Hum Genet 82(6):1290–1305PubMedCentralPubMedCrossRefGoogle Scholar
  43. 43.
    Baumann M et al (2012) Mutations in FKBP14 cause a variant of Ehlers-Danlos syndrome with progressive kyphoscoliosis, myopathy, and hearing loss. Am J Hum Genet 90(2):201–216PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Cabral WA et al (2005) Mutations near amino end of alpha 1(I) collagen cause combined OI/EDS by interference with N-propeptide processing. J Biol Chem 280(19):19259–19269PubMedCrossRefGoogle Scholar
  45. 45.
    Malfait F, Symoens S, Goemans N, Gyftodimou Y, Holmberg E, López-González V, Mortier G, Nampoothiri S, Petersen MB, De Paepe A (2013) Helical mutations in type I collagen that affect the processing of the amino-propeptide result in an Osteogenesis Imperfecta/Ehlers-Danlos Syndrome overlap syndrome. Orphanet J Rare Dis 8:78PubMedCentralPubMedCrossRefGoogle Scholar
  46. 46.
    Makareeva E et al (2006) Molecular mechanism of alpha 1(I)-osteogenesis imperfecta/Ehlers-Danlos syndrome: unfolding of an N-anchor domain at the N-terminal end of the type I collagen triple helix. J Biol Chem 281(10):6463–6470PubMedCrossRefGoogle Scholar
  47. 47.
    Malfait F et al (2004) The natural history, including orofacial features of three patients with Ehlers-Danlos syndrome, dermatosparaxis type (EDS type VIIC). Am J Med Genet A 131(1):18–28PubMedCrossRefGoogle Scholar
  48. 48.
    Pierard GE, Lapiere M (1976) Skin in dermatosparaxis. Dermal microarchitecture and biomechanical properties. J Invest Dermatol 66(1):2–7PubMedCrossRefGoogle Scholar
  49. 49.
    Nusgens BV et al (1992) Evidence for a relationship between Ehlers-Danlos type VII C in humans and bovine dermatosparaxis. Nat Genet 1(3):214–217PubMedCrossRefGoogle Scholar
  50. 50.
    Schwarze U et al (2004) Rare autosomal recessive cardiac valvular form of Ehlers-Danlos syndrome results from mutations in the COL1A2 gene that activate the nonsense-mediated RNA decay pathway. Am J Hum Genet 74(5):917–930PubMedCentralPubMedCrossRefGoogle Scholar
  51. 51.
    Malfait F et al (2006) Total absence of the alpha2(I) chain of collagen type I causes a rare form of Ehlers-Danlos syndrome with hypermobility and propensity to cardiac valvular problems. J Med Genet 43(7):e36PubMedCrossRefGoogle Scholar
  52. 52.
    Nuytinck L et al (2000) Classical Ehlers-Danlos syndrome caused by a mutation in type I collagen. Am J Hum Genet 66(4):1398–1402PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Malfait F et al (2007) Three arginine to cysteine substitutions in the pro-alpha (I)-collagen chain cause Ehlers-Danlos syndrome with a propensity to arterial rupture in early adulthood. Hum Mutat 28(4):387–395PubMedCrossRefGoogle Scholar
  54. 54.
    Cabral WA et al (2007) Y-position cysteine substitution in type I collagen (alpha1(I) R888C/p.R1066C) is associated with osteogenesis imperfecta/Ehlers-Danlos syndrome phenotype. Hum Mutat 28(4):396–405PubMedCrossRefGoogle Scholar
  55. 55.
    Lund A et al (2008) A novel arginine-to-cysteine substitution in the triple helical region of the alpha1(I) collagen chain in a family with an osteogenesis imperfecta/Ehlers-Danlos phenotype. Clin Genet 73(1):97–101PubMedCrossRefGoogle Scholar
  56. 56.
    Gensure RC et al (2005) A novel COL1A1 mutation in infantile cortical hyperostosis (Caffey disease) expands the spectrum of collagen-related disorders. J Clin Invest 115(5):1250–1257PubMedCentralPubMedGoogle Scholar
  57. 57.
    Rohrbach M et al (2011) Phenotypic variability of the kyphoscoliotic type of Ehlers-Danlos syndrome (EDS VIA): clinical, molecular and biochemical delineation. Orphanet J Rare Dis 6:46PubMedCentralPubMedCrossRefGoogle Scholar
  58. 58.
    Faber P et al (2007) The successful use of recombinant factor VIIa in a patient with vascular-type Ehlers-Danlos syndrome. Acta Anaesthesiol Scand 51(9):1277–1279PubMedGoogle Scholar
  59. 59.
    Freeman RK, Swegle J, Sise MJ (1996) The surgical complications of Ehlers-Danlos syndrome. Am Surg 62(10):869–873PubMedGoogle Scholar
  60. 60.
    Cikrit DF, Miles JH, Silver D (1987) Spontaneous arterial perforation: the Ehlers-Danlos specter. J Vasc Surg 5(2):248–255PubMedGoogle Scholar
  61. 61.
    Oderich GS et al (2005) The spectrum, management and clinical outcome of Ehlers-Danlos syndrome type IV: a 30-year experience. J Vasc Surg 42(1):98–106PubMedCrossRefGoogle Scholar
  62. 62.
    Pepin M et al (2000) Clinical and genetic features of Ehlers-Danlos syndrome type IV, the vascular type. N Engl J Med 342(10):673–680PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2014

Authors and Affiliations

  1. 1.Center for Medical GeneticsGhent University Hospital, Ghent UniversityGhentBelgium

Personalised recommendations