Skip to main content

Two-Dimensional Mid-Infrared Correlation Spectroscopy in Protein Research

  • Chapter
  • First Online:
Optical Spectroscopy and Computational Methods in Biology and Medicine

Abstract

Representative results showing the position and strength of two-dimensional (2D) correlation spectroscopy in protein research are surveyed in this article. Special emphasis is placed on infrared spectroscopy. Different types of external perturbations that are particularly useful for exploring properties of proteins are discussed. Most promising developments in 2D correlation spectroscopy are demonstrated through results obtained for protein systems. The aim of this article has been to present 2D correlation spectroscopy as a simple method that significantly improves information about protein structure gained from infrared spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Noda I, Ozaki Y (2004) Two-dimensional correlation spectroscopy: applications in vibrational and optical spectroscopy. John Wiley & Sons, Chichester

    Google Scholar 

  2. Baiz CR, Reppert M, Tokmakoff A (2013) An introduction to protein 2d ir spectroscopy. In: Fayer MD (ed) Ultrafast infrared vibrational spectroscopy, CRC Press. http://web.mit.edu/~tokmakofflab/documents/Intro2DIR.pdf. Accessed 10 Apr 2013

  3. Yang WJ, Griffiths P, Byler DM, Susi H (1885) Protein conformation by infrared spectroscopy: resolution enhancement by fourier self-deconvolution. Appl Spectrosc 39(2):282–287

    Google Scholar 

  4. Jackson M, Mantsch HH (1995) The use and misuse of FTIR spectroscopy in the determination of protein structure. Crit Rev Biochem Mol Biol 30(2):95–120

    CAS  Google Scholar 

  5. Noda I (1986) Two-dimensional infrared (2D IR) spectroscopy of synthetic and biopolymers. Bull Am Phys Soc 31(3):520

    Google Scholar 

  6. Noda I (1993) Generalized two-dimensional correlation method applicable to infrared, Raman, and other types of spectroscopy. Appl Spectrosc 47(9):1329–1336

    CAS  Google Scholar 

  7. Raval A, Piana S, Eastwood MP, Dror RO, Shaw DE (2012) Refinement of protein structure homology models via long, all-atom molecular dynamics simulations. Proteins 80(8):2071–2079

    CAS  Google Scholar 

  8. Dobson CM (2003) Protein folding and misfolding. Nature 426(6968):884–90

    CAS  Google Scholar 

  9. Dill KA, MacCallum JL (2012) The Protein-Folding Problem, 50 Years On. Science 338(6110):1042–1046

    CAS  Google Scholar 

  10. Xu M, Ermolenkov VV, Uversky VN, Lednev IK (2008). Hen egg white lysozyme fibrillation: a deep UV resonance Raman spectroscopic study. J Biophotonics 1(3):215–229

    CAS  Google Scholar 

  11. Cerf E, Sarroukh R, Tamamizu-Kato S, Breydo L, Derclaye S, Dufrêne YF, Narayanaswami V, Goormaghtigh E, Ruysschaert JM, Raussens V (2009) Antiparallel β-sheet: a signature structure of the oligomeric amyloid β-peptide. Biochem J 421(3):415–423

    CAS  Google Scholar 

  12. Zandomeneghi G, Krebs MR, McCammon MG, Fandrich M (2004) FTIR Reveals Structural Differences between Native β-Sheet Proteins and Amyloid Fibrils. Protein Sci 13(12):3314–3321

    CAS  Google Scholar 

  13. Meier RJ (2005) Vibrational spectroscopy: a ‘vanishing’ discipline? Chem Soc Rev 34(9):743–752

    CAS  Google Scholar 

  14. Noda I (2002) General Theory of Two-dimensional (2D) Analysis. In: Chalmers JM, Griffiths PR (eds) Handbook of Vibrational Spectroscopy, vol. 3. John Wiley & Sons, p 2123–2134

    Google Scholar 

  15. Ozaki Y (2002) 2D Correlation spectroscopy in vibrational spectroscopy. In: Chalmers JM, Griffiths PR (eds) Handbook of vibrational spectroscopy, vol. 3. John Wiley & Sons, pp 2135–2172

    Google Scholar 

  16. Noda I (2008) Generalized two-dimensional correlation spectroscopy. In: Laane J (ed) Frontiers of molecular spectroscopy. Elsevier Science, p 367–381

    Google Scholar 

  17. Noda I (2004) Advances in two-dimensional correlation spectroscopy. Vib Spectrosc 36(2):143–165

    CAS  Google Scholar 

  18. Noda I (2006) Progress in two-dimensional (2D) correlation spectroscopy. J Mol Struct 799(1–3):2–15

    CAS  Google Scholar 

  19. Noda I (2008) Recent advancement in the field of two-dimensional correlation spectroscopy. J Mol Struct 883–884:2–26

    Google Scholar 

  20. Noda I (2010) Two-dimensional correlation spectroscopy-Biannual survey 2007-2009. J Mol Struct 974(1–3):3–24

    CAS  Google Scholar 

  21. Noda I (2012) Close-up view on the inner workings of two-dimensional correlation spectroscopy. Vib Spectrosc 60:146–153

    CAS  Google Scholar 

  22. Ozaki Y, Šašic S, Tanaka T, Noda I (2001) Two-Dimensional correlation spectroscopy: principle and recent theoretical development. Bull Chem Soc Jpn 74(1):1–17

    CAS  Google Scholar 

  23. Xiaoming D, Bo Y, Haiying Z, Guangzhong Y, Ozaki Y (2004) Generalized two–dimensional correlation spectroscopy—theory and applications in analytical field. Sci China, Ser B: Chem 47(3):257–266

    Google Scholar 

  24. Czarnecki MA (2011) Two-dimensional correlation analysis of hydrogen-bonded systems: basic molecules. Appl Spectrosc Rev 46(1):67–103

    CAS  Google Scholar 

  25. Pazderka T, Kopecký V Jr (2008) 2D correlation spectroscopy and its application in vibrational spectroscopy using MATLAB. http://dsp.vscht.cz/konference_matlab/MATLAB08/prispevky/081_pazderka.pdf. Accessed 25 Mar 2013

  26. Czarnik-Matusewicz, Pilorz S, Ashton L, Blanch EW (2006) Potential pitfalls concerning visualization of the 2D results. J Mol Struct 799(1–3):253–258

    Google Scholar 

  27. Huang H (2007) “Sequential Order” rules in generalized two-dimensional correlation spectroscopy. Anal Chem 79(21):8281–8292

    CAS  Google Scholar 

  28. Ma L, Ahmed Z, Asher SA (2011) Ultraviolet resonance raman study of side chain electrostatic control of poly-l-lysine conformation. J Phys Chem B 115(14):4251–4258

    CAS  Google Scholar 

  29. Huang H, Ding X, Zhu C, He Z, Yu Y (2013) 2D correlation analysis: sequential order judging. Anal Chem 85(4):2161–2168

    CAS  Google Scholar 

  30. Czarnik-Matusewicz B, Kim SB, Jung YM (2009) A study of urea-dependent denaturation of β-lactoglobulin by principal component analysis and two-dimensional correlation spectroscopy. J Phys Chem B 113(2):559–566

    CAS  Google Scholar 

  31. Shashilov V, Lednev IK (2008) 2D Correlation deep uv resonance raman spectroscopy of early events of lysozyme fibrillation: kinetic mechanism and potential interpretation pitfalls. J Am Chem Soc 130(1):309–317

    CAS  Google Scholar 

  32. Shashilov VA, Lednev IK (2009) Two-dimensional correlation Raman spectroscopy for characterizing protein structure and dynamics. J Raman Spectrosc 40(12):1749–1758

    CAS  Google Scholar 

  33. Ma L, Sikirzhytski V, Hong Z, Lednev IK, Asher SA (2013) Insight into resolution enhancement in generalized two dimensional correlation spectroscopy. Appl Spectrosc 67(3):283–290

    CAS  Google Scholar 

  34. Jung YM, Noda I (2006) New approaches to generalized two-dimensional correlation spectroscopy and its applications. Appl Spectrosc Rev 41(5):515–547

    CAS  Google Scholar 

  35. Dluhy R, Shanmukh S, Morita SI (2006) The application of two-dimensional correlation spectroscopy to surface and interfacial analysis. Surf Interface Anal 38(11):1481–1496

    CAS  Google Scholar 

  36. Nabet A, Pézolet M (1997) Two-dimensional FT-IR spectroscopy: a powerful method to study the secondary structure of proteins using H-D exchange. Appl Spectrosc 51(4):466–469

    CAS  Google Scholar 

  37. Sefara NL, Magtoto NP, Richardson HH (1997) Structural characterization of beta-lactoglobulin in solution using two-dimensional ft mid-infrared and ft near-infrared correlation spectroscopy. Appl Spectrosc 51(4):536–540

    CAS  Google Scholar 

  38. Schultz CP, Fabian H, Mantsch HH, (1998) Two-dimensional mid-IR and near-IR correlation spectra of ribonuclease a: using overtones and combination modes to monitor changes in secondary structure. Biospectroscopy 4:S19–S29

    CAS  Google Scholar 

  39. Fabian H, Mantsch HH, Schultz CP (1999) Two-dimensional IR correlation spectroscopy: sequential events in the unfolding process of the λ Cro-V55C repressor protein. Proc Natl Acad Sci USA 96(23):13153–13158

    CAS  Google Scholar 

  40. Jung Y, Czarnik-Matusewicz B, Ozaki Y (1999) An IR vs. Raman 2D heterospectral correlation study of the secondary structure of β-lactoglobulin in aqueous solutions. In: Ozaki Y, Noda I (eds) AIP Conference Proceedings 503. Two-Dimensional Correlation Spectroscopy. Kobe-Sanda, pp 275-278 (29 August–1 September 1999)

    Google Scholar 

  41. Pancoska P, Kubelka J, Keiderling TA (1999) Novel use of a static modification of two-dimensional correlation analysis. Part I: comparison of the secondary structure sensitivity of electronic circular dichroism, ft-ir, and raman spectra of proteins. Appl Spectrosc 53(6):655–665

    CAS  Google Scholar 

  42. Kubelka J, Pancoska P, Keiderling TA (1999) Novel use of a static modification of two-dimensional correlation analysis. Part II: Hetero-spectral correlations of protein raman, ft-ir, and circular dichroism spectra. Appl Spectrosc 53(6):666–671

    CAS  Google Scholar 

  43. Kubelka J, Pancoska P, Keiderling TA (1999) In: Greve J, Puppels GJ, Otto C (eds) Spectroscopy of biological molecules: new directions. 8th European Conference on the Spectroscopy of Biological Molecules, Enschede 29 August–2 September 1999. Kluwer Academic Publishers, pp 67–68

    Google Scholar 

  44. Meskers S, Ruysschaert JM, Goormaghtigh E (1999) Hydrogen-deuterium exchange of streptavidin and its complex with biotin studied by 2D-Attenuated total reflection Fourier transform infrared spectroscopy. J Am Chem Soc 121(22):5115–5122

    CAS  Google Scholar 

  45. Smeller L, Heremans K (1999) 2D FT-IR spectroscopy analysis of the pressure-induced changes in proteins. Vib Spectrosc 19(2):375–378

    CAS  Google Scholar 

  46. Smeller L, Heremans K (1999) Hydrogen-deuterium exchange versus conformational changes in proteins. A two-dimensional ftir approach. In: H. Ludwig (ed) Advances in high pressure bioscience and biotechnology. Springer-Verlag, Berlin, pp 223–226

    Google Scholar 

  47. Czarnik-Matusewicz B, Murayama K, Wu Y, Ozaki Y (2000) Two-dimensional attenuated total reflection/infrared correlation spectroscopy of adsorption-induced and concentration-dependent spectral variations of β-Lactoglobulin in aqueous solutions. J Phys Chem B 104(32):7803–7811

    CAS  Google Scholar 

  48. Dzwolak W, Kato M, Shimizu A, Taniguchi Y (2000) Comparative two-dimensional Fourier transform infrared correlation spectroscopic study on the spontaneous, pressure-, and temperature-enhanced H/D exchange in alpha-lactalbumin. Appl. Spectrosc 54(7):963–967

    CAS  Google Scholar 

  49. Jung YM, Czarnik-Matusewicz B, Ozaki Y (2000) Two-dimensional infrared, two-dimensional raman, and two-dimensional infrared and raman heterospectral correlation studies of secondary structure of β-lactoglobulin in buffer solutions. J Phys Chem B 104(32):7812–7817

    CAS  Google Scholar 

  50. Schultz CP, Bârzu O, Mantsch HH (2000) Two-dimensional infrared correlation analysis of protein unfolding: use of spectral simulations to validate structural changes during thermal denaturation of bacterial CMP kinases. Appl Spectrosc 54(7):931–938

    CAS  Google Scholar 

  51. Smeller L, Rubens P, Frank J, Fidy J, Heremans K (2000) Two dimensional Fourier-transform infrared correlation spectroscopy study of the high-pressure tuning of proteins. Vib Spectrosc 22:119–125

    CAS  Google Scholar 

  52. Sonoyama M, Nakano T (2000) Infrared rheo-optics of bombyx mori fibroin film by dynamic step-scan FT-IR spectroscopy combined with digital signal processing. Appl Spectrosc 54(7):968–973

    CAS  Google Scholar 

  53. Filosa A, Wang Y, Ismail AA, English AM (2001) Two-dimensional infrared correlation spectroscopy as a probe of sequential events in the thermal unfolding of cytochromes c. Biochemistry 40(28):8256–8263

    CAS  Google Scholar 

  54. Lefèvre T, Subirade M (2001) Conformational rearrangement of β-lactoglobulin upon interaction with an anionic membrane. Biochim Biophys Acta 1549(1):37–50

    Google Scholar 

  55. Murayama K, Wu Y, Czarnik-Matusewicz B, Ozaki Y (2001) Two-dimensional/attenuated total reflection infrared correlation spectroscopy studies on secondary structural changes in human serum albumin in aqueous solutions: pH-dependent structural changes in the secondary structures and in the hydrogen bondings of side chains. J Phys Chem B 105(20):4763–4769

    CAS  Google Scholar 

  56. Paquet MJ, Laviolette M, Pézolet M, Auger M (2001) Two-dimensional infrared correlation spectroscopy study of the aggregation of cytochrome c in the presence of dimyristoylphosphatidylglycerol. Biophys J 81(1):305–312

    CAS  Google Scholar 

  57. Wu Y, Murayama K, Ozaki Y (2001) Two-dimensional infrared spectroscopy and principle component analysis studies of the secondary structure and kinetics of hydrogen–deuterium exchange of human serum albumin. J Phys Chem B 105(26):6251–6259

    CAS  Google Scholar 

  58. Shanmukh S, Howell P, Baatz JE, Dluhy RA (2002) Effect of hydrophobic surfactant proteins SP-B and SP-C on phospholipid monolayers. Protein structure studied using 2D IR and βν correlation analysis. Biophys J 83(4):2126–2141

    CAS  Google Scholar 

  59. Turnay J, Olmo N, Gasset M, Iloro I, Arrondo JL, Lizarbe MA (2002) Calcium-dependent conformational rearrangements and protein stability in chicken annexin. Biophys J 83(4):2280–2291

    CAS  Google Scholar 

  60. Wu Y, Murayama K, Czarnik-Matusewicz B, Ozaki Y (2002) Two-dimensional attenuated total reflection/infrared correlation spectroscopy studies on concentration and heat-induced structural changes of human serum albumin in aqueous solutions. Appl Spectrosc 56(9):1186–1193

    CAS  Google Scholar 

  61. Yan YB, Wang Q, He HW, Hu XY, Zhang RQ, Zhou HM (2003) Two-dimensional infrared correlation spectroscopy study of sequential events in the heat-induced unfolding and aggregation process of myoglobin. Biophys J 85(3):1959–1967

    CAS  Google Scholar 

  62. Iloro I, Chehin R, Goni FM, Pajares MA, Arrondo JL (2004) Methionine adenosyltransferase α-helix structure unfolds at lower temperatures than β-Sheet: a 2D-IR Study. Biophys J 86(6):3951–3958

    CAS  Google Scholar 

  63. Lefèvre T, Arseneault K, Pézolet M (2004) Study of protein aggregation using two-dimensional correlation infrared spectroscopy and spectral simulations. Biopolymers 73(6):705–715

    Google Scholar 

  64. Yan YB, Wang Q, He HW, Zhou HM (2004) Protein thermal aggregation involves distinct regions: sequential events in the heat-induced unfolding and aggregation of hemoglobin. Biophys J 86(3):1682–1690

    CAS  Google Scholar 

  65. Iloro I, Goni FM, Arrondo JL (2005) A 2D-IR study of heat- and [13C] urea-induced denaturation of sarcoplasmic reticulum Ca2+-ATPase. Acta Biochim Pol 52(2):477–483

    CAS  Google Scholar 

  66. Ortiz M, Sanoguet Z, Hu H, Chazin WJ, McMurray CT, Salisbury JL, Pastrana-Rios B (2005) Dynamics of hydrogen–deuterium exchange in chlamydomonas centrin. Biochemistry 44(7):2409–2418

    CAS  Google Scholar 

  67. Richard JA, Kelly I, Marion D, Auger M, Pézolet M (2005) Structure of β-purothionin in membranes: a two-dimensional infrared correlation spectroscopy study. Biochemistry 44(1):52–61

    CAS  Google Scholar 

  68. Shanmukh S, Biswas N, Waring AJ, Walther FJ, Wang Z, Chang Y, Notter RH, Dluhy RA (2005) Structure and properties of phospholipid-peptide monolayers containing monomeric SP-B1-25: II. Peptide conformation by infrared spectroscopy. Biophys Chem 113(1):233–244

    CAS  Google Scholar 

  69. Zhang J, Yan YB (2005) Probing conformational changes of proteins by quantitative second-derivative infrared spectroscopy. Anal Biochem 340(1):89–98

    CAS  Google Scholar 

  70. Domínguez-Vidal A, Saenz-Navajas MP, Ayora-Cañada MJ, Lendl B (2006) Detection of albumin unfolding preceding proteolysis using fourier transform infrared spectroscopy and chemometric data analysis. Anal Chem 78(10):3257–3264

    Google Scholar 

  71. Iloroa I, Pastrana-Rios B (2006) Simulation of FT-IR spectra and 2D-COS analysis for the H/D exchange of two related ligands. J Mol Struct 799(1–3):153–157

    Google Scholar 

  72. Sallach RE, Wei M, Biswas N, Conticello VP, Lecommandoux S, Dluhy RA, Chaikof EL (2006) Micelle density regulated by a reversible switch of protein. J Am Chem Soc 128(36):12014–12019

    CAS  Google Scholar 

  73. Sánchez-Bautista S, Kazaks A, Beaulande M, Torrecillas A, Corbalán-García S, Gómez-Fernández JC (2006) Structural study of the catalytic domain of PKCzeta using infrared spectroscopy and two-dimensional infrared correlation spectroscopy. FEBS J 273(14):3273–86

    Google Scholar 

  74. Yan YB, Zhang J, He HW, Zhou HM (2006) Oligomerization and aggregation of bovine pancreatic ribonuclease a: characteristic events observed by FTIR spectroscopy. Biophys J 90(7):2525–2533

    CAS  Google Scholar 

  75. Bernabeua A, Contrerasb LM, Villalaín J (2007) Two-dimensional infrared correlation spectroscopy study of the interaction of oxidized and reduced cytochrome c with phospholipid model membranes. Biochim Biophys Acta, Biomembr 1768(10):2409–2420

    Google Scholar 

  76. Kamerzell TJ, Middaugh CR (2007) Two-dimensional correlation spectroscopy reveals coupled immunoglobulin regions of differential flexibility that influence stability. Biochemistry 46(34):9762–9773

    CAS  Google Scholar 

  77. Rodríguez-Casado A, Molina M, Carmona P (2007) Spectroscopic study of conformational changes accompanying self-assembly of hcv core protein. Proteins: Struct, Funct, Bioinf 66(1):110–117

    Google Scholar 

  78. Iloro I, Narváez D, Guillén N, Camacho CM, Guillén L, Cora E, Pastrana-Ríos B (2008) The kinetics of the hydrogen/deuterium exchange of epidermal growth factor receptor ligands. Biophys J 94(10):4041–4055

    CAS  Google Scholar 

  79. Massaro S, Zlateva T, Torre V, Quaroni L (2008) Detection of molecular processes in the intact retina by ATR-FTIR spectromicroscopy. Anal Bioanal Chem 390(1):317–322

    CAS  Google Scholar 

  80. Arada I, Julien JP, Torre BG, Huarte N, Andreu D, Pai EF, Arrondo JLR, Nieva JL (2009) Structural constraints imposed by the conserved fusion peptide on the HIV-1 gp41 epitope recognized by the broadly neutralizing antibody 2F5. J Phys Chem B 113(41):13626–13637

    Google Scholar 

  81. Cerdà-Costa N, De la Arada I, Avilés FX, Arrondo JLR, Villegas S (2009) Influence of aggregation propensity and stability on amyloid fibril formation as studied by fourier transform infrared spectroscopy and two-dimensional COS analysis. Biochemistry 48(44):10582–10590

    Google Scholar 

  82. Saguer E, Alvarez P, Sedman J, Ramaswamy HS, Ismail AA (2009) Heat-induced gel formation of plasma proteins: new insights by FTIR 2D correlation spectroscopy. Food Hydrocolloids 23(3):874–879

    CAS  Google Scholar 

  83. Wang LX, Zhang L, Wu Y (2009) Thermally induced early events of ribonuclease a under reducing conditions: evidenced by principal component analysis and two-dimensional correlation. Vib Spectrosc 51(1):4–10

    CAS  Google Scholar 

  84. Fabian H, Yu Z, Wang Y, Naumanna D (2010) Generalized 2D and time-resolved FTIR studies of protein unfolding events. J Mol Struct 974(1–3):203–209

    CAS  Google Scholar 

  85. del Valle Sosa L, Alfaro E, Santiago J, Narváez D, Rosado MC, Rodríguez A, Gómez AM, Schreiter ER, Pastrana-Ríos B (2011) The structure, molecular dynamics, and energetics of centrin-melittin complex. Proteins: Struct, Funct, Bioinf 79(11):3132–3143

    Google Scholar 

  86. Nowak C, Laredo T, Gebert J, Lipkowski J, Gennis RB, Ferguson-Miller S, Knoll W, Naumann RLC (2011) 2D-SEIRA spectroscopy to highlight conformational changes of the cytochrome c oxidase induced by direct electron transfer. Metallomics 3(6):619–627

    CAS  Google Scholar 

  87. Zhang M, Zhang L, Wu Y (2011) The pressure tolerance of different poly-l-lysine conformers in aqueous solution: Infrared spectroscopy and two-dimensional correlation analysis. Vib Spectrosc 57(2):319–325

    CAS  Google Scholar 

  88. Saguer E, Alvarez P, Ismail AA (2012) Heat-induced denaturation/aggregation of porcine plasma and its fractions studied by FTIR spectroscopy. Food Hydrocolloids 27(1):208–219

    CAS  Google Scholar 

  89. Zhang M, Dang YQ, Liu TY, Li HW, Wu Y, Li Q, Wang K, Zou B (2013) Pressure-induced fluorescence enhancement of the BSA-protected gold nanoclusters and the corresponding conformational changes of protein. J Phys Chem C 117(1):639–647

    CAS  Google Scholar 

  90. Wang Y, Murayama K, Myojo Y, Tsenkova R, Hayashi N, Ozaki Y (1998) Two-dimensional fourier transform near-infrared spectroscopy study of heat denaturation of ovalbumin in aqueous solutions. J Phys Chem B 102(34):6655–6662

    CAS  Google Scholar 

  91. Ozaki Y, Murayama K, Wang Y (1999) Application of two-dimensional near-infrared correlation spectroscopy to protein research. Vib Spectrosc 20(2):127–132

    CAS  Google Scholar 

  92. Murayama K, Czarnik-Matusewicz B, Wu Y, Tsenkova R, Ozaki Y (2000) Comparison between conventional spectral analysis methods, chemometrics, and two-dimensional correlation spectroscopy in the analysis of near-infrared spectra of protein. Appl Spectrosc 54(7):978–985

    CAS  Google Scholar 

  93. Wu Y, Czarnik-Matusewicz B, Murayama K, Ozaki Y (2000) Two-dimensional near-infrared spectroscopy study of human serum albumin in aqueous solutions: using overtones and combination modes to monitor temperature-dependent changes in the secondary structure. J Phys Chem B 104(24):5840–5847

    CAS  Google Scholar 

  94. Czarnik-Matusewicz B (2002) Near-infrared spectroscopy combined with two-dimensional correlation spectroscopy in studies of biomolecules. In: Tsuchikawa S (ed) Useful and advanced information in the field of near infrared spectroscopy. Research Signpost, pp 189–216

    Google Scholar 

  95. Murayama K, Ozaki Y (2002) Two-dimensional near-IR correlation spectroscopy study of molten globule-like state of ovalbumin in acidic pH region: Simultaneous changes in hydration and secondary structure. Biopolymers 67(6):394–405

    CAS  Google Scholar 

  96. Yuan B, Murayama K, Wu Y, Tsenkova R, Dou X, Era S (2003) Temperature-dependent near-infrared spectra of bovine serum albumin in aqueous solutions: spectral analysis by principal component analysis and evolving factor analysis. Appl Spectrosc 57(10):1223–1229

    CAS  Google Scholar 

  97. Yu L, Xiang B (2008) Two-dimensional near-IR correlation spectroscopy study the interaction of protein and famotidine in acidic pH region. Spectrochim Acta A 69(2):599–603

    Google Scholar 

  98. Kamerzell TJ, Kanai S, Liu J, Shire SJ, Wang YJ (2009) Increasing IgG concentration modulates the conformational heterogeneity and bonding network that influence solution properties. J Phys Chem B 113(17):6109–6118

    CAS  Google Scholar 

  99. Mo C, Wu P, Chen X, Shao Z (2009) The effect of water on the conformation transition of Bombyx mori silk fibroin. Vib Spectrosc 51(1):105–109

    CAS  Google Scholar 

  100. Ma S, Freedman TB, Cao X, Nafie LA (2006) Two-dimensional vibrational circular dichroism correlation spectroscopy: pH-induced spectral changes in L-alanine. J Mol Struct 799(1–3):226–238

    CAS  Google Scholar 

  101. Ryu SR, Czarnik-Matusewicz B, Dukor RK, Nafie LA, Jung YM (2012) Analysis of the molten globule state of bovine α-lactalbumin by using vibrational circular dichroism. Vib Spectrosc 60:68–72

    CAS  Google Scholar 

  102. Czarnik-Matusewicz B, Pilorz S (2006) 2DCOS and MCR-ALS as a combined tool of analysis of β-lactoglobulin CD spectra. J Mol Struct 799(1–3):211–220

    CAS  Google Scholar 

  103. Zhou P, Xie X, Knight DP, Zong XH, Deng F, Yao WH (2004) Effects of pH and calcium ions on the conformational transitions in silk fibroin using 2D Raman correlation spectroscopy and 13C Solid-State NMR. Biochemistry 43(35):11302–11311

    CAS  Google Scholar 

  104. Hu BW, Zhou P, Noda I, Ruan QX (2006) Generalized two-dimensional correlation analysis of nmr and raman spectra for structural evolution characterizations of silk fibroin. J Phys Chem B 110(36):18046–18051

    CAS  Google Scholar 

  105. Ashton L, Barron LD, Hecht L, Hyde J, Blanch EW (2007) Two-dimensional Raman and Raman optical activity correlation analysis of the alpha-helix-to-disordered transition in poly(L-glutamic acid). Analyst 132(5):468–79

    CAS  Google Scholar 

  106. Ashton L, Blanch EW (2010) pH-induced conformational transitions in α-lactalbumin investigated with two-dimensional Raman correlation variance plots and moving windows. J Mol Struct 974(1–3):132–138

    CAS  Google Scholar 

  107. Ashton L, Johannessen C, Goodacre R (2011) The importance of protonation in the investigation of protein phosphorylation using raman spectroscopy and raman optical activity. Anal Chem 83(20):7978–7983

    CAS  Google Scholar 

  108. Ashton L, Barron LD, Czarnik-Matusewicz B, Hecht L, Hyde J, Blanch EW (2006) Two-dimensional correlation analysis of Raman optical activity data on the α-helix-to-β-sheet transition in poly(L-lysine). Mol Phys 104(9):1429–1445

    CAS  Google Scholar 

  109. Ashton L, Czarnik-Matusewicz B, Blanch EW (2006) Application of two-dimensional correlation analysis to Raman optical activity. J Mol Struct 799(1–3):61–71

    CAS  Google Scholar 

  110. Ashton L, Blanch EW (2008) Investigation of polypeptide conformational transitions with two-dimensional Raman optical activity correlation analysis, applying autocorrelation and moving window approaches. Appl Spectrosc 62(5):469–75

    CAS  Google Scholar 

  111. Pazderka T, Kopecký V Jr (2010) Two-dimensional correlation analysis of Raman optical activity—Basic rules and data treatment. Vib Spectrosc 60:193–199

    Google Scholar 

  112. Shashilov V, Xu M, Ermolenkov VV, Fredriksen L, Lednev IK (2007) Probing a Fibrillation Nucleus Directly by Deep Ultraviolet Raman Spectroscopy. J Am Chem Soc 129(22):6972–6973

    CAS  Google Scholar 

  113. Lednev IK, Xu M, Shashilov V (2009) Ultraviolet Raman spectroscopy is uniquely suitable for studying amyloid diseases. Curr Sci 97(2):180–185

    CAS  Google Scholar 

  114. Oladepo SA, Xiong K, Hong Z, Asher SA, Handen J, Lednev IK (2012) UV Resonance Raman Investigations of Peptide and Protein Structure and Dynamics. Chem Rev 112(5):2604–2628

    CAS  Google Scholar 

  115. Wang G, Geng L (2005) Statistical and Generalized Two-Dimensional Correlation Spectroscopy of Multiple Ionization States. Fluorescence of Neurotransmitter Serotonin. Anal Chem 77(1):20–29

    CAS  Google Scholar 

  116. Fukuma H, Nakashima K, Ozaki Y, Noda I (2006) Two-dimensional fluorescence correlation spectroscopy IV: Resolution of fluorescence of tryptophan residues in alcohol dehydrogenase and lysozyme. Spectrochim Acta A 65(3–4):517–522

    Google Scholar 

  117. Wang G, Gao Y, Geng ML (2006) Generalized two-dimensional heterocorrelation analysis of spectrally resolved and temporally resolved fluorescence of the 8-Anilino-1-naphthalenesulfonate-Apomyoglobin complex with pH perturbation. J Phys Chem B 110(16):8506–8512

    CAS  Google Scholar 

  118. Chen C, Xiang B, Yu L, Wang T, Zhao B (2008) The application of two-dimensional fluorescence correlation spectroscopy on the interaction between bovine serum albumin and paeonolum in the presence of Fe(III). Spectrosc Lett 41(8):385–392

    CAS  Google Scholar 

  119. Ozaki Y, Noda I (2000) Two-dimensional vibrational correlation spectroscopy in biomedical sciences. In: Meyers RA (ed) Encyclopedia of analytical chemistry. John Wiley & Sons, pp 322–340

    Google Scholar 

  120. Ozaki Y, Murayama K, Wu Y, Czarnik-Matusewicz B (2003) Two-dimensional infrared correlation spectroscopy studies on secondary structures and hydrogen bondings of side chains of proteins. Spectroscopy 17(2–3):79–100

    CAS  Google Scholar 

  121. Arrondo JLR, Iloro I, Garcia-Pacios M, Goñi FM (2006) Two-dimensional infrared correlation spectroscopy. In: Arrondo JLR, Alonso A (eds). Advanced techniques in biophysics. Springer Series in Biophysics Volume 10, pp 73–88

    Google Scholar 

  122. Ozaki Y, Šašic S (2006) Two-dimensional correlation spectroscopy of biological and polymeric materials. In: Braiman M, Gregoriou VG (ed) Vibrational spectroscopy of biological and polymeric materials. CRC Press, Taylor & Francis Group, pp 163–214

    Google Scholar 

  123. Vigano C, Manciu L, Buyse F, Goormaghtigh E, Ruysschaert JM (2001) Attenuated total reflection IR spectroscopy as a tool to investigate the structure, orientation and tertiary structure changes in peptides and membrane proteins. Pept Sci 55(5):373–380

    CAS  Google Scholar 

  124. Goormaghtigh E (2009) FTIR data processing and analysis tools. In: Barth H, Haris PI (eds) Biological and biomedical infrared spectroscopy. Advances in Biomedical Spectroscopy, vol 2. IOS Press, pp 104–128

    Google Scholar 

  125. Goormaghtigh E, Raussens V, Ruysschaert JM (1999) Attenuated total refection infrared spectroscopy of proteins and lipids in biological membranes. Biochim Biophys Acta, Rev Biomembr 1422(2):105–185

    CAS  Google Scholar 

  126. Goormaghtigh E, Cabiaux V, Ruysschaert JM (1994) Determination of soluble and membrane protein structure by Fourier transform infrared spectroscopy. III. Secondary structures. In: Hilderson HJ, Ralston GB (eds) Physicochemical methods in the study of biomembranes. Subcellular Biochemistry, vol 23. Springer, pp 405–450

    Google Scholar 

  127. Invernizzi G, Papaleo E, Sabate R, Ventura S (2012) Protein aggregation: Mechanisms and functional consequences. Int J Biochem Cell Biol 44(9):1541–1554

    CAS  Google Scholar 

  128. Oberg KA, Fink AL (1998) A new attenuated total reflectance Fourier transform infrared spectroscopy method for the study of proteins in solution. Anal Biochem 256(1):92–106

    CAS  Google Scholar 

  129. Goormaghtigh E, Cabiaux V, Ruysschaert JM (1994) Determination of soluble and membrane protein structure by Fourier transform infrared spectroscopy. II. Experimental aspects, side chain structure, and H/D exchange. In: Hilderson HJ, Ralston GB (eds) Physicochemical methods in the study of biomembranes. Subcellular Biochemistry, vol 23. Springer, pp 363–403

    Google Scholar 

  130. Dzwolak W, Kato M, Taniguchi Y (2002) Fourier transform infrared spectroscopy in high-pressure studies on proteins. Biochim Biophys Acta 1595(1–2):131–144

    CAS  Google Scholar 

  131. Barth A, Zscherp C (2002) What vibrations tell us about proteins. Quaterly Rev Biophys 35(4):369–430

    CAS  Google Scholar 

  132. Jung YM, Czarnik-Matusewicz B, Kim SB (2004) Characterization of concentration-dependent infrared spectral variations of urea aqueous solutions by principal component analysis and two-dimensional correlation spectroscopy. J Phys Chem 108(34):13008–13014

    CAS  Google Scholar 

  133. Barton FE, Himmelsbach DS, Duckworth JH, Smith MJ (1992) Two-dimensional vibration spectroscopy: correlation of mid- and near-infrared regions. Appl Spectrosc 46(3):420–429

    CAS  Google Scholar 

  134. McClure WF, Maeda H, Dong J, Liu Y, Ozaki Y (1996) Two-dimensional correlation of fourier transform near-infrared and fourier transform raman spectra i: mixtures of sugar and protein. Appl Spectrosc 50(4):467–475

    CAS  Google Scholar 

  135. Wu Y, Jiang J H, Ozaki Y (2002) A new possibility of generalized two-dimensional correlation spectroscopy: hybrid two-dimensional correlation spectroscopy. J Phys Chem A 106(11) 2422–2429

    CAS  Google Scholar 

  136. Thomas M, Richardson HH (2000) Two-dimensional FT-IR correlation analysis of the phase transitions in a liquid crystal, 4†²-n-octyl-4-cyanobiphenyl (8CB). Vib Spectrosc 24(1):137–146

    CAS  Google Scholar 

  137. Elmore DL, Dluhy RA (2001) βν-Correlation analysis: a modified two-dimensional infrared correlation method for determining relative rates of intensity change. J Phys Chem B 105(45):11377–11386

    CAS  Google Scholar 

  138. Shanmukh S, Dluhy RA (2004) kν correlation analysis. a quantitative two-dimensional IR correlation method for analysis of rate processes with exponential functions. J Phys Chem A 108(26):5625–5634

    CAS  Google Scholar 

  139. Elmore DL, Shanmukh S, Dluhy RA (2002) A study of binary phospholipid mixtures at the air-water interface using infrared reflection-absorption spectroscopy and 2D IR βν correlation analysis. J Phys Chem A 106(14):3420–3428

    CAS  Google Scholar 

  140. Litwińczuk A, Petrus J, Czarnik-Matusewicz B (2012) Orientation of solid supported lipid bilayers examined by βν-correlation analysis. Vib Spectrosc 60:173–179

    Google Scholar 

  141. Shanmukh S, Dluhy RA (2004) 2D IR analyses of rate processes in lipid–antibiotic monomolecular films. Vib Spectrosc 36(2):167–177

    CAS  Google Scholar 

  142. Czarnik-Matusewicz, Pilorz S, Hawranek JP (2005) Temperature-dependent water structural transitions examined by near-IR and mid-IR spectra analyzed by multivariate curve resolution and two-dimensional correlation spectroscopy. Anal Chim Acta 544(1–2):15–25

    Google Scholar 

  143. Muik B, Lendl B, Molina-Diaz A, Valcarcel M, Ayora-Cañada MJ (2007) Two-dimensional correlation spectroscopy and multivariate curve resolution for the study of lipid oxidation in edible oils monitored by FTIR and FT-Raman spectroscopy. Anal Chim Acta 593(1):54–67

    CAS  Google Scholar 

  144. Himmelsbach D, Holser RA (2009) Application of 2D correlation spectroscopy with MCR in the preparation of glycerol polyesters. Vib Spectrosc 51(1):142–145

    CAS  Google Scholar 

  145. Spegazzini N (2010) Two-dimensional infrared correlation spectroscopy and multivariate curve resolution methods: application to quantitative monitoring of curing process. PhD thesis. http://hdl.handle.net/10803/9043. Accessed 10 Apr 2013

  146. Navea S, de Juan A, Tauler R (2003) Modeling temperature-dependent protein structural transitions by combined near-IR and Mid-IR spectroscopies and multivariate curve resolution. Anal Chem 75(20):5592–5601

    CAS  Google Scholar 

  147. Szyc L, Pilorz S, Czarnik-Matusewicz B (2008) FTIR-ATR investigations of an α-helix to β-sheet conformational transition in poly(l-lysine). J Mol Liq 141(3):155–159

    CAS  Google Scholar 

  148. Jung JM (2003) Principal component analysis based two-dimensional (PCA-2D) correlation spectroscopy: PCA denoising for 2D correlation spectroscopy. Bull Korean Chem Soc 24(9):1345–1350

    CAS  Google Scholar 

  149. Shashilov VA, Lednev IK (2010) Advanced statistical and numerical methods for spectroscopic characterization of protein structural evolution. Chem Rev 110(10):5692–5713

    CAS  Google Scholar 

  150. Hering JA, Haris PI (2009) FTIR spectroscopy for analysis of protein secondary structure. In: Barth A, Haris PI (eds) Biological and biomedical infrared spectroscopy. IOP Press, pp 129–167

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (No. 2012R1A1A3011844) and the Korean Federation of Science and Technology Societies (KOFST) grant funded by Korea Government (MEST, Basic Research Promotion Fund). BC-M is grateful to the National Science Centre for research funding (grant no. 2012/05/B/ST/02029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bogusława Czarnik-Matusewicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Czarnik-Matusewicz, B., Jung, Y.M. (2014). Two-Dimensional Mid-Infrared Correlation Spectroscopy in Protein Research. In: Baranska, M. (eds) Optical Spectroscopy and Computational Methods in Biology and Medicine. Challenges and Advances in Computational Chemistry and Physics, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7832-0_8

Download citation

Publish with us

Policies and ethics