Skip to main content

Biologically Relevant Molecules Studied in Low Temperature Inert Matrices

  • Chapter
  • First Online:
Book cover Optical Spectroscopy and Computational Methods in Biology and Medicine

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 14))

Abstract

Matrix isolation is a technique where gaseous atoms and molecules are trapped in an environment of solidified inert gases at temperatures close to absolute zero. The method was originally used to study free radicals and other short-lived chemical reaction intermediates, but receives nowadays many other uses, including its application to the study of molecules of biological importance. Without surprise, the method has been progressively catching the interest of biochemists and molecular biologists, and has been applied to many molecules with pharmaceutical or medical use. In this Chapter, we describe the use of matrix isolation infrared spectroscopy to investigate molecules of biological interest. The fundamentals of the technique are briefly presented, and examples of its application to the study of different phenomena in a series of selected molecules of biological relevance are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rosemeyer H (2004) Chem Biodiversity 1:361

    Google Scholar 

  2. Fischer E (1899) Ber Deutsch Chem Gesellschaft 32:2550

    Google Scholar 

  3. Yamada H, Okamoto T (1972) Chem Pharm Bull 20:623

    Google Scholar 

  4. Movassaghi M, Hill MD (2006) J Am Chem Soc 128:14254

    Google Scholar 

  5. Nelson DL, Cox MM (2008) Principles of biochemistry, 5th edn. W. H. Freeman and Company, pp. 272–274

    Google Scholar 

  6. Schertler GFX (2008) Nature 453:292

    Google Scholar 

  7. Saunders J (2003) Nature Rev Microbiol 1:6

    Google Scholar 

  8. Sabbert D, Engelbrecht S, Junge W (1996) Nature 381:623

    Google Scholar 

  9. Whittle E, Dows DA, Pimentel GC (1954) J Chem Phys 22:1943

    Google Scholar 

  10. Norman I, Porter G (1954) Nature 174:508

    Google Scholar 

  11. Lin CY, Krantz A (1972) J Chem Soc Chem Commun 1111/1112:1316

    Google Scholar 

  12. Chapman OL, McIntosh CL, Pacansky J (1973) J Am Chem Soc 95:244

    Google Scholar 

  13. Pong RGS, Shirk JS (1973) J Am Chem Soc (95) 248

    Google Scholar 

  14. Breda S, Reva I, Lapinski L, Fausto R (2004) Phys Chem Chem Phys 6:929

    Google Scholar 

  15. Rochkind MM (1967) Anal Chem 39:567

    Google Scholar 

  16. Perutz RN, Turner JJ (1973) J Chem Soc Faraday Trans 2(69):452

    Google Scholar 

  17. Barnes AJ, Bignall JC, Purnell CJ (1975) J Raman Spectrosc 4:159

    Google Scholar 

  18. Fausto R, Gómez-Zavaglia A (2009) Light-induced reactions in cryomatrices. In: Abini A (ed) Specialist periodical reports—photochemistry, vol 37. The Royal Society of Chemistry Publishing, pp 72–109

    Google Scholar 

  19. Fausto R, Gómez-Zavaglia A (2010) Light-induced reactions in cryomatrices. In: Abini A (ed) Specialist periodical reports—photochemistry, vol 38. The Royal Society of Chemistry Publishing, pp 37–66

    Google Scholar 

  20. Fausto R, Gómez-Zavaglia A (2011) Light-induced reactions in cryomatrices. In: Abini A (ed) Specialist periodical reports—photochemistry, vol 39. The Royal Society of Chemistry Publishing, pp 1–29

    Google Scholar 

  21. Gómez-Zavaglia A, Fausto R (2003) Phys Chem Chem Phys 5:3154

    Google Scholar 

  22. Stepanian SG, Reva ID, Radchenko ED, Rosado MTS, Duarte MLTS, Fausto R, Adamowicz L (1998) J Phys Chem A 102:1041

    Google Scholar 

  23. Gómez-Zavaglia A, Fausto R (2003) Vibrat Spectrosc 33:105

    Google Scholar 

  24. Gómez-Zavaglia A, Reva ID, Fausto R (2003) Phys Chem Chem Phys 5:41

    Google Scholar 

  25. Rosado MTS, Duarte MLTS, Fausto R (1998) Vibrat Spectrosc 16:35

    Google Scholar 

  26. Suenram RD, Lovas FJ (1978) J Mol Spectrosc 72:372

    Google Scholar 

  27. Suenram RD, Lovas FJ (1980) J Am Chem Soc 102:7180

    Google Scholar 

  28. Schäfer L, Sellers HL, Lovas FJ, Suenram RD (1980) J Am Chem Soc 102:6566

    Google Scholar 

  29. Godfrey PD, Brown RD (1995) J Am Chem Soc 117:2019

    Google Scholar 

  30. Lovas FJ, Kawashima Y, Grabow J-U Suenram RD, Freser GT, Hirota E (1995) AstrophysJ 455:201

    Google Scholar 

  31. Iijima K, Tanaka K, Onuma S (1991) J Mol Struct 246:257

    Google Scholar 

  32. Borba A, Gómez-Zavaglia A, Fausto R (2006) J Mol Struct 794:196

    Google Scholar 

  33. Kaczor A, Reva ID, Proniewicz LM, Fausto R (2007) J Phys Chem A 111:2957

    Google Scholar 

  34. Stepanian SG, Reva ID, Radchenko ED, Adamowicz L (1998) J Phys Chem A 102:4623

    Google Scholar 

  35. Stepanian SG, Reva ID, Radchenko ED, Adamowicz L (2001) J Phys Chem A 105:10664

    Google Scholar 

  36. Jarmelo S, Lapinski L, Nowak MJ, Carey PR, Fausto R (2005) J Phys Chem A 109:5689

    Google Scholar 

  37. Jarmelo S, Fausto R (2006) J Mol Struct 786:175

    Google Scholar 

  38. Kaczor A, Reva ID, Proniewicz LM, Fausto R (2006) J Phys Chem A 110:2360

    Google Scholar 

  39. Petrella RJ, Karplus M (2004) Proteins: Struct Funct Bioinf 54:716

    Google Scholar 

  40. Stewart RF (1967) Acta Cryst 23:1102

    Google Scholar 

  41. Szczesniak M, Nowak MJ, Rostkowska H, Szczepaniak K, Person WB, Shugar D (1983) J Am Chem Soc 105:5969

    Google Scholar 

  42. Barnes AJ, Stuckey MA, Le Gall L (1984) Spectrochim Acta A 40:419

    Google Scholar 

  43. Nowak MJ (1984) J Mol Struct 116:49

    Google Scholar 

  44. Ivanov AY, Plokhotnichenko AM, Radchenko ED, Sheina GG, Blagoi YP (1995) J Mol Struct 372:91

    Google Scholar 

  45. Les A, Adamowicz L, Nowak MJ, Lapinski L (1992) Spectrochim Acta A 48:1385

    Google Scholar 

  46. Graindourze M, Smets J, Zeegers-Huyskens T, Maes G (1990) J Mol Struct 222:345

    Google Scholar 

  47. Szczepaniak K, Szczesniak M, Nowak MJ, Scott I, Chin S, Person WB (1984) Int J Quant Chem 18:547

    Google Scholar 

  48. Feyer V, Plekan O, Richter R, Coreno M, de Simone M, Prince KC, Trofimov AB, Zaytseva IL, Schirmer J (2010) J Phys Chem A 114:10270

    Google Scholar 

  49. Peeters Z, Botta O, Charnley SB, Ruiterkamp R, Ehrenfreund P (2003) Astrophys J 593:L129

    Google Scholar 

  50. Perun S, Sobolewski AL, Domcke W (2006) J Phys Chem A 110:9031

    Google Scholar 

  51. Schultz T, Samoylova E, Radloff W, Hertel IV, Sobolewski AL, Domcke W (2004) Science 306:1765

    Google Scholar 

  52. Martins Z, Botta O, Fogel ML, Sephton MA, Glavin DP, Watson JS, Dworkin JP, Schwartz AW, Ehrenfreund P (2008) Earth Planet Sci Lett 270:130

    Google Scholar 

  53. Stokes PG, Schwartz AW (1979) Nature 282:709

    Google Scholar 

  54. Stokes PG, Schwartz AW (1981) Geochim Cosmochim Acta 45:563

    Google Scholar 

  55. van der Velden W, Schwartz AW (1977) Geochim Cosmochim Acta 41:961

    Google Scholar 

  56. Radchenko ED, Plokhotnichenko AM, Sheina GG, Blagoi YP (1983) Biofizika 28:923

    Google Scholar 

  57. Nowak MJ (1989) J Mol Struct 193:35

    Google Scholar 

  58. Radchenko ED, Plokhotnichenko AM, Sheina GG, Blagoi YP (1984) Biofizika 29:553

    Google Scholar 

  59. Stepanian SG, Sheina GG, Radchenko ED, Blagoi YP (1985) J Mol Struct 131:333

    Google Scholar 

  60. Sheina GG, Radchenko ED, Stepanian SG, Blagoi YP (1986) Stud Biophys 114:123

    Google Scholar 

  61. Nowak MJ, Lapinski L, Kwiatkowski JS (1989) Chem Phys Lett 157:14

    Google Scholar 

  62. Nowak MJ, Lapinski L, Kwiatkowski JS, Leszczynski J (1996) J Phys Chem A 100:3527

    Google Scholar 

  63. Szczesniak M, Kwiatkowski JS, Kubulat K, Szczepaniak K, Person WB (1988) J Am Chem Soc 110:8319

    Google Scholar 

  64. Nowak MJ, Lapinski L, Fulara J (1989) Spectrochim Acta A 45:229

    Google Scholar 

  65. Szczepaniak K, Szczesniak M (1987) J Mol Struct 156:29.66. Kwiatkowski JA, Pullman B (1975) Adv Heterocycl Chem 18?:199

    Google Scholar 

  66. Fazakerley GV, Gdaniec Z, Sowers LC (1993) J Mol Biol 230:6

    Google Scholar 

  67. Khuu P, Ho PS (2009) Biochemistry 48:7824

    Google Scholar 

  68. Griffiths AJF, Miller JH, Suzuki DT, Lewontin RC, Gelbart WM (2000) An introduction to genetic analysis, 7th edn. W. H. Freeman, New York (U.S.A.)

    Google Scholar 

  69. Lapinski L, Reva I, Nowak MJ, Fausto R (2011) Phys Chem Chem Phys 13:9676

    Google Scholar 

  70. Fogarasi G (2002) J Phys Chem A 106:1381

    Google Scholar 

  71. Piacenza M, Grimme S (2004) J Comput Chem 25:83

    Google Scholar 

  72. Wolken JK, Yao C, Turecek F, Polce MJ, Wesdemiotis C (2007) Int J Mass Spectrom 267:30

    Google Scholar 

  73. Trygubenko SA, Bogdan TV, Rueda M, Orozco M, Luque FJ, Sponer J, Slavicek P, Hobza P (2002) Phys Chem Chem Phys 4:4192

    Google Scholar 

  74. Kobayashi R (1998) J Phys Chem 102:10813

    Google Scholar 

  75. Brown RD, Godfrey PD, McNaughton D, Pierlot AP (1989) J Am Chem Soc 111:2308

    Google Scholar 

  76. Feyer V, Plekan O, Richter R, Coreno M, Vall-Llosera G, Prince KC, Trofimov AB, Zaytseva IL, Moskovskaya TE, Gromov EV, Schirmer J (2009) J Phys Chem A 113:5736

    Google Scholar 

  77. Lapinski L, Nowak MJ, Reva I, Rostkowska H, Fausto R (2010) Phys Chem Chem Phys 12:9615

    Google Scholar 

  78. Maçôas EMS, Kriachtchev L, Pettersson M, Fausto R, Räsänen M (2003) J Am Chem Soc 125:16188

    Google Scholar 

  79. Maçôas EMS, Fausto R, Pettersson M, Khriachtchev L, Räsänen M (2000) J Phys Chem A 104:6956

    Google Scholar 

  80. Fausto R, Maçôas EMS (2001) J Mol Struct 563/564:29

    Google Scholar 

  81. Reva I, Nowak MJ, Lapinski L, Fausto R (2012) J Chem Phys 136:064511

    Google Scholar 

  82. Southwell IA, Russell MF, Davies NW (2011) Flav Fragr J 26:336

    Google Scholar 

  83. Ayala-Zavala JF, González-Aguilar GA, Del-Toro-Sanchez L (2009) J Food Sci 74:84

    Google Scholar 

  84. Cook AM (1960) J Pharm Pharmacol 12:19T

    Google Scholar 

  85. Council Directive 76/768/EEC on the Approximation of the Laws of the Member States Relating to Cosmetic Products, European Commission, Brussels, Belgium, 1999

    Google Scholar 

  86. Furia TE, Schenkel AG (1968) Soap Chem Special 44:47

    Google Scholar 

  87. Bhargava HN, Leonard PA (1996) Am J Infect Control 24:209

    Google Scholar 

  88. McMurry LM, Oethinger M, Levy SB (1998) Nature 394:531

    Google Scholar 

  89. Iconomopoulou SM, Andreopoulou AK, Soto A, Kallitsis JK, Voyiatzis GA (2005) J Contr Release 102:223

    Google Scholar 

  90. Krupa J, Olbert-Majkut A, Reva I, Fausto R Wierzejewska M (2012) J Phys Chem B DOI: 10.1021/jp306339 g (in the press)

    Google Scholar 

  91. Giuliano BM, Reva I, Lapinski L, Fausto R (2012) J Chem Phys 136:024505

    Google Scholar 

  92. Hanscha C, McKarnsb SC, Smith CJ, Doolittle DJ (2000) Chem-Biol Interact 127:61

    Google Scholar 

  93. Kuş N, Reva I, Bayari S, Fausto R (2012) J Mol Struct 1007:88

    Google Scholar 

  94. Kuş N, Bayari S, Reva I, Fausto R (2012) Proceedings of the XXIV IUPAC Symposium on Photochemistry, Coimbra, 15–20 July 2012. p 95

    Google Scholar 

  95. Ashfold MNR, Devine AL, Dixon RN, King GA, Nix MGD, Oliver TAA (2008) Proc Natl Acad Sci USA 105:12701

    Google Scholar 

  96. Bultink IEM, Lems WF, Kostense PJ, Dijkmans BAC, Voskuyl AE (2005) Arthritis Rheum 52:2044

    Google Scholar 

  97. O’Reilly RA (1967) J Clin Invest 46:829

    Google Scholar 

  98. Zhao H, Neamati N, Hong HX, Mazumder A, Wang SM, Sunder S, Milne GWA, Pommier Y, Burke TR (1997) J Med Chem 40:242

    Google Scholar 

  99. Hirsh J, Dalen JE, Anderson DR, Poller L, Bussey H, Ansell J, Deykin D (2001) Chest 119:8

    Google Scholar 

  100. Kashman Y, Gustafson KR, Fuller RW, Cardellina JH, McMahon JB, Currens MJ, Buckheit RW, Hughes SH, Cragg GM, Boyd MR (1992) J Med Chem 35:2735

    Google Scholar 

  101. Fylaktakidou KC, Hadjipavlou-Litina DJ, Litinas KE, Nicolaides DN (2004) Curr Pharm Des 10:3813

    Google Scholar 

  102. Gacche RN, Gond DS, Dhole NA, Dawane BS (2006) J Enzyme Inhib Med Chem 21:157

    Google Scholar 

  103. Maeda M (1984) Laser dyes. Academic Press, New York (U.S.A.)

    Google Scholar 

  104. Kumar S, Giri R, Mishra SC, Machwe MK (1995) Spectrochim Acta A 51:1459

    Google Scholar 

  105. Raikar US, Renuka CG, Nadaf YF, Mulimani BG (2006) J Mol Struct 787:127

    Google Scholar 

  106. Christie RM (2001) Colour chemistry. Royal Society of Chemistry, Cambridge (UK)

    Google Scholar 

  107. Chapman OL, McIntosh CL, Pacansky J (1973) J Am Chem Soc 95:614

    Google Scholar 

  108. Breda S, Lapinski L, Reva I, Fausto R (2004) J Photochem Photobiol A 162:139

    Google Scholar 

  109. Kuş N, Breda S, Reva I, Tasal E, Ogretir C, Fausto R (2007) Photochem Photobiol 83:1237 (Erratum: ibidim, 83, 1541)

    Google Scholar 

  110. Kuş N, Breda S, Fausto R (2009) J Mol Struct 81:924–926

    Google Scholar 

  111. Reva ID, Nowak MJ, Lapinski L, Fausto R (2008) Chem Phys Lett 452:20

    Google Scholar 

  112. Seixas de Melo JS, Becker RS, Maçanita AL (1994) J Phys Chem 98:6054

    Google Scholar 

  113. Fausto R, Breda, S, Kuş N (2008) J Phys Org Chem 21:644

    Google Scholar 

  114. Seixas de Melo JS, Quinteiro G, Pina J, Breda S, Fausto R (2001) J Mol Struct 565/566:59

    Google Scholar 

  115. Song PS, ordon III WH (1970) J Phys Chem 74:4234

    Google Scholar 

  116. Kuş N, Reva I, Fausto R (2010) J Phys Chem A 114:12427

    Google Scholar 

Download references

Acknowledgements

The authors thank all their colleagues involved in the studies described in more detail in this Chapter. Finantial support from Fundação para a Ciência e a Tecnologia (FCT – Portugal) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Fausto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Fausto, R., Kuş, N. (2014). Biologically Relevant Molecules Studied in Low Temperature Inert Matrices. In: Baranska, M. (eds) Optical Spectroscopy and Computational Methods in Biology and Medicine. Challenges and Advances in Computational Chemistry and Physics, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7832-0_7

Download citation

Publish with us

Policies and ethics