Skip to main content

Vibrational Microspectroscopy for Analysis of Atherosclerotic Arteries

  • Chapter
  • First Online:

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 14))

Abstract

This Chapter describes the fundamental principles of atherosclerotic plaque formation along with features detectable by histology. The main focus is on reviewing the use of Raman and IR spectroscopy in the study of atherosclerotic arteries. The analysis of the experimental results is possible only with the application of mathematical and statistical tools of analysis, i.e. chemometrics, which are also described. This chapter proves that chemometrics allows us to create a link between IR and Raman spectroscopy and their application in chemistry.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Wrobel TP, Marzec KM, Majzner K, Kochan K, Bartus M, Chlopicki S, Baranska M (2012) Analyst 137:4135–4139

    Google Scholar 

  2. Peres MB, Silveira L, Zangaro RA, Pacheco MTT, Pasqualucci CA (2011) Lasers Med Sci 26:645–655

    Google Scholar 

  3. Krafft C, Sergo V (2006) Spectroscopy 20:195–218

    Google Scholar 

  4. Wang L, Mizaikoff B (2008) Anal Bioanal Chem 391:1641–1654

    Google Scholar 

  5. Kazarian SG, Chan KL (2006) BBA 1758:858–867

    Google Scholar 

  6. Bhargava R, Fernandez DC, Hewitt SM, Levin I (2006) BBA 1758:830–845

    Google Scholar 

  7. Walsh, M. J, Kajdacsy-Balla, A, Holton, S. E, Bhargava, R. Vibrational Spectroscopy2012, 60, 23–28

    Article  CAS  Google Scholar 

  8. Reddy R, Davis B, Carney PS, Bhargava R (2011) IEEE Proceedings—International Symposium on Biomedical Imaging, 2011. doi:10.1109/ISBI.2011.5872511

    Google Scholar 

  9. Chew SF, Wood BR, Kanaan C, Browning J, MacGregor D, Davis ID, Cebon J, Tait BD, McNaughton D (2007) Tiss Ant 69(1), 252–258

    Google Scholar 

  10. Bassan P, Lee J, Sachdeva A, Pissardini J, Dorling KM, Fletcher JS, Henderson A, Gardner P (2013) Analyst 138(1):144–157

    Google Scholar 

  11. Diem M, Romeo M, Matthäus C, Miljkovic M, Miller M, Lasch P (2004) Infrared Phys Tech 45:331–338

    Google Scholar 

  12. Hughes C, Brown MD, Clarke NW, Flower KR, Gardner P (2012) Analyst 137:4720–4726

    Google Scholar 

  13. Heraud P, Ng ES, Caine S, Yu QC, Hirst C, Mayberry R, Bruce A, Wood BR, McNaughton D, Stanley EG, Elefanty AG (2010) Stem cell Res 4:140–147

    Google Scholar 

  14. Amrania H, Amrania H, McCrow AP, Matthews MR, Kazarian SG, Kuimova MK, Phillips CC (2011) Chem Sci 2:107–111

    Google Scholar 

  15. Stone N, Priet MC, Crow P, Uff J, Ritchie AW (2007) Anal Boanal Chem 387:1657–1668

    Google Scholar 

  16. Kawabata T, Mizuno T, Okazaki S, Hiramatsu M, Setoguchi T, Kikuchi H, Yamamoto M, Hiramatsu Y, Kondo K, Baba M, Ohta M, Kamiya K, Tanaka T, Sucuki S, Konno HJ (2008) Gastroenterol 43(4):283–290

    Google Scholar 

  17. Huang Z, McWilliams A, Lui H, Mclean D.I, Lam S, Zeng H (2003) Int J Cancer 107:1047–1052

    Google Scholar 

  18. Pilotto S, Pacheco MTT, Silveira L, Villaverde AB, Zangaro RA (2001) Laser Med Sci 16(1):2–9

    Google Scholar 

  19. Utzinger U, Heintzelman DL, Mahadevan-Jansen A, Malpica A, Follen M, Richards-Kortum R (2001) Appl Spectrosc 55(8):955–959

    Google Scholar 

  20. Shima MG, Song LMWK, Marcon NE, Wilson BC (2000) Photochem Photobiol 72(1):146–150

    Google Scholar 

  21. Ogawa M, Harada Y, Yamaoka Y, Fujita K, Yaku H, Takamatsu T (2009) Biochem Biophys Res Commun 382(2):370–374

    Google Scholar 

  22. Hata TR, Scholz TA, Ermakov IV, McClane RW, Khachik F, Gellermann W, Pershing LK (2000) J Invest Dermatol 115:441–448

    Google Scholar 

  23. Hanlon EB, Manoharan R, Koo TW, Shafer KE, Motz JT, Fitzmaurice M, Kramer JR, Itzkan I, Dasari RR, Feld MS (2000) Phys Med Biol 4(2):R1–R59

    Google Scholar 

  24. Mescher AL (2009) Junqueira’s basic histology, twelfth edition. McGraw Hill Professional

    Google Scholar 

  25. Coen M, Gabbiani G, Bochaton-Piallat ML (2011) ArteriosclerThrombVasc Biol 31:2391–2396

    Google Scholar 

  26. Wilson FJ, Kestenbaum MG, Gibney JA, Matta S (1997) Histology Image Review: a complete illustrated review course in basic histology. Appleton & Lange

    Google Scholar 

  27. Camejo G, Hurt-Camejo E, Wiklund O, Bondjers G (1998) Atherosclerosis 139:205–222

    Google Scholar 

  28. Khalil MF, Wagner WD, Goldberg IJ (2004) Arterioscler Thromb Vasc Biol 24:2211–2218

    Google Scholar 

  29. Gu L, Okada Y, Clinton SK, Gerard C, Sukhova GK, Libby P, Rollins BJ (1998) Molecular cell 2:275–281

    Google Scholar 

  30. Haley KJ, Lilly CM, Yang JH, Feng Y, Kennedy SP, Turi TG, Thompson JF, Sukhova GH, Libby P, Lee RT (2000) Circulation 102:2185–2189

    Google Scholar 

  31. Mach F, Sauty A, Iarossi AS, Sukhova GK, Neote K, Libby P, Luster AD (1999) J Clin Invest 104:1041–1050

    Google Scholar 

  32. Weber C, Noels H (2011) Nat Med 17:1410–1422

    Google Scholar 

  33. Libby P (2012) Arterioscler Thromb Vasc Biol 32:2045–2051

    Google Scholar 

  34. Gerszten R, Tager A (2012) N Engl J Med 366:1734–1736

    Google Scholar 

  35. Curtiss LK (2009) N Engl J Med 360:1144–1146

    Google Scholar 

  36. Jones CB, Sane DC, Herrington DM (2003) Cardiovasc Res 59:812–823

    Google Scholar 

  37. Lindstedt KA, Kovanen PT (2004) Cardiovasc Res 15

    Google Scholar 

  38. Hansson GK (2005) N Engl J Med 352:1685–1695

    Google Scholar 

  39. Heistad DD (2003) N Engl J Med 349:2285–2287

    Google Scholar 

  40. Williams H, Johnson JL, Carson KGS, Jackson CL (2002) Arterioscler Thromb Vasc Biol 22:788–792

    Google Scholar 

  41. Bond AR, Jackson CL (2011) J Biomed Biotechnol

    Google Scholar 

  42. Burke AP, Virmani R, Galis, Z, Haudenschild CC, Muller JE. J. Am. Coll. Cardiol. 2003, 41, 1874–1886

    Google Scholar 

  43. Thorp E, Tabas I (2009) J Leukoc Biol 86:1089–1095

    Google Scholar 

  44. Bosshart F, Utzinger U, Hess OM, Wyser J, Mueller A, Schneider J, Niederer P, Anliker M, Krayenbuehl HP (1992) Cardiovasc Res 26:620–625

    Google Scholar 

  45. Angheloiu GU, Arendt JT, Muller MG, Haka AS, Georgakoudi I, Motz JT, Scepanovic OR, Kuban BD, Myles J, Miller F, Podrez EA, Fitzmaurice M, Kramer JR, Feld MS (2006) Arterioscler Thromb Vascular Biol 26(7):1594–1600

    Google Scholar 

  46. Morguet AJ, Gabriel RE, Buchwald AB, Werner GS, Nyga R, Kreuzer H (1997) Lasers Surg Med 20:382–393

    Google Scholar 

  47. Motz JT, Fitzmaurice M, Miller A, Gandhi SJ, Haka AS, Galindo LH, Dasari RR, Kramer JR, Feld MS (2006) J Biomed Opt 11(2):021003, 1–9

    Google Scholar 

  48. Tuczu EM, Berkalp B, DeFranco AC, Ellis SG, Goormastic M, Whitlow PL, Franco I, Raymond RE, Nissen SE (1996) J Am Coll Cardiol 27:832–838

    Google Scholar 

  49. Vallabhasjoula V, Fuster J (1997) Nucl Med 28:1788–1796

    Google Scholar 

  50. Fayad ZA, Fuster V (2001) Circ Res 89(4):305–316

    Google Scholar 

  51. Naghavi M, Libby P, Falk E, Casscells SW, Litovsky S, Rumberger J, Badimon JJ, Stefanadis C, Moreno P, Pasterkamp G, Fayad Z, Stone PH, Waxman S, Raggi P, Madjid M, Zarrabi A, Burke A, Yuan C, Fitzgerald PJ, Siscovick DS, de Korte CL, Aikawa M, Airaksinen KE, Assmann G, Becker CR, Chesebro JH, Farb A, Galis ZS, Jackson C, Jang IK, Koenig W, Lodder RA, March K, Demirovic J, Navab M, Priori SG, Rekhter MD, Bahr R, Grundy SM, Mehran R, Colombo A, Boerwinkle E, Ballantyne C, Insull W Jr, Schwartz RS, Vogel R, Serruys PW, Hansson GK, Faxon DP, Kaul S, Drexler H, Greenland P, Muller JE, Virmani R, Ridker PM, Zipes DP, Shah PK, Willerson JT (2003) Circulation 14, 108(15):1772–1778

    Google Scholar 

  52. Prokoshina NA, Khovratovich NN, Khmara NF, Khatkevich MA (1985) ZhurnalPrikladnoiSpektr 41:785–789

    Google Scholar 

  53. Baraga JJ, Feld MS, Rava RP (1991) Appl Spectrosc 45:709–711

    Google Scholar 

  54. Kodali DR, Small DM, Powell J, Krishnan N (1991) Appl Spectrosc 45(8):1310–1317

    Google Scholar 

  55. Manoharan R, Baraga JJ, Rava RP, Dasari RR, Fitzmaurice M, Feld MS (1993) Atherosclerosis 103:181–193

    Google Scholar 

  56. Hayashi J, Saito T, Aizawa K (1997) Lasers Med Sci 21:287–293

    Google Scholar 

  57. Li C, Ebenstein D, Xu C, Chapman J, Saloner D, Rapp J, Pruitt L (2002) J Biomed Mater Res A 64:197–206

    Google Scholar 

  58. Adar F, Jelicks L, Naudin C, Rousseau D, Yeh S (2003) Proceedings of SPIE 11:3–11

    Google Scholar 

  59. Becker A, Epple M, Müller KM, Schmitz I (2004) J Inorg Biochem 98:2032–2038

    Google Scholar 

  60. Wetzel DL, Post GR, Lodder RA (2005) Vib Spectr 38:53–59

    Google Scholar 

  61. Colley CS, Kazarian SG, Weinberg PD, Lever MJ (2004) Biopolymers 74:328–335

    Google Scholar 

  62. Wang L, Chapman J, Palmer RA, Alter TM, Hooper BA, van Ramm O, Mizaikoff B (2006) Appl Spectrosc 60:1121–1126

    Google Scholar 

  63. Palombo F, Shen, H, Benguigui LES, Kazarian SG, Upmacis RK (2009) Analyst 134:1107–1118

    Google Scholar 

  64. Palombo F, Cremers SG, Weinberg PD, Kazarian SG (2009) J R Soc Interface 6:669–680

    Google Scholar 

  65. Palombo F, Danoux CB, Weinberg PD, Kazarian SG (2009) J biomed Opt 14:044008

    Google Scholar 

  66. Ebenstein DM, Coughlin D, Chapman J, Li C, Pruitt L (2009) J Biomed Mater Res A 91:1028–1037

    Google Scholar 

  67. Wrobel TP, Mateuszuk L, Chlopicki S, Malek K, Baranska M (2011) Analyst 136:5247–5255

    Google Scholar 

  68. Wrobel TP, Majzner K, Baranska M (2012) Spectrochim Acta Part A: Mol Biomol Spectrosc 96:940–994

    Google Scholar 

  69. Lattermann A, Matthäus C, Bergner N, Beleites C, Romeike BF, Krafft C, Brehm BR, Popp J (2012) J Biophotonics 12:1–12

    Google Scholar 

  70. Mostaco-Guidolin LB, Sowa MG, Ridsdale A, Pegoraro AF, Smith MSD, Hewko MD, Kohlenberg EK, Schattka B, Shiomi M, Stolow A, Ko AC-T (2010) Optic Soc Am 1:59–73

    Google Scholar 

  71. Ko ACT, Ridsdale A, Smith MSD, Mostaco-Guidolin LB, Hewko MD, Pegoraro AF, Kohlenberg EK, Schattka B, Shiomi M, Stolow A, Sowa MG (2010) J. Biomed Opt 15(2):020501, 1–3

    Google Scholar 

  72. Wang HW, Langohr IM, Sturek M, Cheng JX (2009) Arterioscler Thromb Vasc Biol 29:1342–1348

    Google Scholar 

  73. Šćepanović OR, Fitzmaurice M, Miller A, Kong Ch-R, Volynskaya Z, Dasari RR, Kramer JR, Feld MS (2011) J Biomed Opt 16(1):011009, 1–10

    Google Scholar 

  74. Bancroft JD, Gamble M (eds) (2008) Theory and practice of histological techniques, 6th edition. Churchill Livingstone: Edinburgh

    Google Scholar 

  75. Luna LG. (eds) Manual of histologic staining methods of the armed forces institute of pathology, 3rd edition, McGraw-Hill Book Company: New York, 1968

    Google Scholar 

  76. Gajda M, Jawien J, Mateuszuk L, Lis GJ, Radziszewski A, Chlopicki S, Litwin JA (2008) Folia Histochem Cytobiol 46:143–146

    Google Scholar 

  77. Arroio A, Lima EF, Honório KM, Silva ABF (2009) Struct Chem 20:577–585

    Google Scholar 

  78. de Juan A, Tauler R (2003) Analyt Chim Acta 500:195–210

    Google Scholar 

  79. Meade AD, Byrne HJ, Lyng FM (2010) Mutat Res 704:108–114

    Google Scholar 

  80. Lasch P, Naumann D (2006) BBA 1758:814–829

    Google Scholar 

  81. Tetteh J, Mader KT, Andanson JM, McAuley WJ, Lane ME, Hadgraft J, Kazarian SG, Mitchell JC (2009) Anal Chim Acta 642:246–256

    Google Scholar 

  82. Silveira L, Sathaiah S, Zangaro RA, Pacheco MTT, Chavantes MC, Pasqualucci CAG (2002) Laser Surg Med 30(4):290–297

    Google Scholar 

  83. Bushman JH, Motz JT, Deinum G, Romer TJ, Fitzmaurice M, Kramer JR, van der Laarse A, Bruschke AV, Feld MS (2001) Cardiovasc Pathol 10:59–68

    Google Scholar 

  84. Deinum G, Rodriquez D, Romer TJ, Fitmaurice M, Kramer JR, Feld MS (1999) Appl Spectrosc 53:938–942

    Google Scholar 

  85. Silveira L, Paula AR, Pasqualucci CA, Pacheco MTT (2008) Instrum Sci Technol 36(2):134–145

    Google Scholar 

  86. Brennan JF III, Romer TJ, Lees RS, Tercyak AM, Kramer JR, Feld MS (1997) Circulation 96:99–105

    Google Scholar 

  87. Buschman HP, Deinum G, Motz JT, Fitzmaurice M, Kramer JR, Laarse A, Bruschke AV, Feld MS (2001) Cardiovasc Pathol 10:69–82

    Google Scholar 

  88. Faiman R (1977) Chem Phys Lipids 18:84–104

    Google Scholar 

  89. Romer TJ, Brennan JF, Fitzmaurice M, Feldstain ML, Deinum G, Myles JL, Kramer JR, Lees RS, Feld MS (1998) Circulation 97:878–885

    Google Scholar 

  90. Brennan JFB, Wang Y, Dasari RR, Feld MS (1997) Appl Spectrosc 51:201–208

    Google Scholar 

  91. Kostogrys RB, Franczyk-Żarów M, Maślak E, Gajda M, Mateuszuk L, Jackson CL, Chłopicki S (2012) Atherosclerosis 223(2):327–331

    Google Scholar 

  92. Manoharan R, Baraga JJ, Feld MS, Rava RP (1992) J Photochem Photobiol 16:211–233

    Google Scholar 

  93. Krafft C, Neudert L, Simat T, Salzer R (2005) SpectrochimicaActaA 61:1529–1535

    Google Scholar 

  94. Hawi SR, Nithipatikom K, Wohlfeil ER, Adar F, Campbell WB (1997) J Lipd Res 38:1591–1597

    Google Scholar 

  95. Manoharan R, Wang Y, Feld MS (1996) Spectrochim Acta Mol Spectrosc 52:215–249

    Google Scholar 

  96. Cárcamo JJ, Aliaga AE, Clavijo E, Garrido C, Gómez-Jeria JS, Campos-Vallette MM (2012) J Raman Spectrosc 43:750–755

    Google Scholar 

  97. Nelson DGA, Williamson BE (1985) Caries Res 19:113–121

    Google Scholar 

  98. Baraga JJ, Feld MS, Rava RP (1992) Appl Spectrosc 46:187–190

    Google Scholar 

  99. Diem M (1993) Intoruction to modern vibrational spectroscopy. Wiley, New York

    Google Scholar 

  100. Weinmann P, Jouan M, Dao NQ, Lacroix B, Groiselle C, Bonte J-P, Luc G (1998) Atherosclerosis 140:81–88

    Google Scholar 

  101. Small DM (1988) Arteriosclerosis 8:103–129

    Google Scholar 

  102. Scepanovic O, Fitzmaurice M, Gardecki JA, Angheloiu GO, Awasthi S, Motz JY, Kramer JR, Dasari RR, Feld MS (2006) J Biomed Opt 11(2):021007

    Google Scholar 

  103. Moreno PR, Lodder RA, Purushothaman KR, Charash WE, O’Connor WN, Muller JE (2002) Circulation 105:923–927

    Google Scholar 

  104. Moreno PR, Muller JE (2003) J Interevent Cardiol 16(3):243–252

    Google Scholar 

  105. Suh WM, Seto AH, Margey RJP, Cruz-Gonzalez I, Jang I-K (2011) Circ Cardiovasc Imaging 4:169–178

    Google Scholar 

  106. Burke AP, Farb A, Malcolm GT, Liang Y-H, Smial JE, Virmani R (1999) J Am Med Assoc 281:921–926

    Google Scholar 

  107. Woolf N, Davies MJ (1994) Sci Am Sci Med 9:38–47

    Google Scholar 

  108. MacNeil BD, Lowe HC, Takano M, Fuster V, Jang IK (2003) Arterioscler Thromb Vasc Biol 23(8):1333–1342

    Google Scholar 

  109. Virmani R, Burke AP, Kolodgie FD, Farb A (2002) J Intervent Cardiol 15(6):439–446

    Google Scholar 

  110. Romer TJ, Brennan JF, Puppels GJ, Zwinderman AH, van Duinen SG, van der Laarse A, van der Steen AF, Bom NA, Bruschke AV (2000) Arterioscler Thromb Vasc Biol 20:478–483

    Google Scholar 

  111. Alano RR, Liu CH (1994) Method for distinguishing between calcified arteriosclerotic tissue and fibrous arteriosclerotic tissue or normal cardiovascular tissue using Raman spectroscopy. US Patent, 1994, Patent No: 5293872

    Google Scholar 

  112. Haka AS, Kramer JR, Dasari RR, Fitzmaurice M (2011) J Biomed Opt 16(1):011011, 1–7

    Google Scholar 

  113. Nogueira GV, Silveira L, Martin AA, Zangaro RA, Pacheco MTT (2005) J Biomed Opt 10(3):031117/1–031117/7

    Google Scholar 

  114. Buschman HP, Deinum G, Motz JT, Fitzmaurice M, Romer TJ, Kramer JR, Laarse A, Bruschke AV, Feld MS (2001) Cardiovasc Pathol 10:59–68

    Google Scholar 

  115. Katz SS, Small DM (1980) J Biol Chem 70:9753–9759

    Google Scholar 

  116. Libby P, Schoenbeck U, Mach F, Selwyn AP, Ganz P (1998) Am J Med 104:14S–18S

    Google Scholar 

  117. Patel R, Janoudi A, Vedre A, Aziz K, Tamhane U, Rubinstein J, Abela OG, Berger K, Abela GS (2011) Arterioscler Thromb Vasc Biol 31:2007–2014

    Google Scholar 

  118. Abela GS (2010) J Clin Lipidol 4:156–164

    Google Scholar 

  119. Rajamäki K, Lappalainen J, Oörni K, Välimäki E, Matikainen S, Kovanen PT, Eklund KK (2011) Arterioscler Thromb Vasc Biol 9:2007–2014

    Google Scholar 

  120. Suhalim JL, Chung C-Y, Lilledahl MB, Lim RS, Levi M, Tromberg BJ, Potma EO (2012) Biophys J 102:1988–1995

    Google Scholar 

  121. Le Cacheux P, Menard G, Nguyen QH, Weinmann PJM, Quy DN (1996) Appl Spectrosc 50:1253–1257

    Google Scholar 

  122. Holton SE, Walsh MJ, Bhargava R (2011) Analyst 136 (14):2953–2958

    Google Scholar 

  123. Buschman HP, Marple ET, Wach ML, Bennett, B, Bakker Schut TC, Bruining HA, Bruschke AV, van der Laarse A, Puppels G (2000) J Anal Chem 72:3771–3775

    Google Scholar 

  124. Motz JT, Gandhi SJ, Scepanovic OR, Haka AS, Kramer JR, Dasari RR, Feld MS (2004) J Biomed Opt 43(3):542–554

    Google Scholar 

  125. Motz JT, Hunter, M, Galindo LH, Gardecki JA, Kramer JR, Dasari RR, Feld MS (2004) Appl Opt 43(3):542–554

    Google Scholar 

  126. Matthäus C, Dochow S, Bergner G, Lattermann A, Romeike BFM, Marple ET, Krafft C, Dietzek B, Brehm BR, Popp, J (2012) Anal Chem 84:7845–7851

    Google Scholar 

  127. Toyran N, Lasch P, Naumann D, Turan B, Severcan F (2006) Biochem J 397:427–436

    Google Scholar 

  128. Ishibashi S, Herz J, Maeda N, Goldstein JL, Brown MS (1994) Proc Natl Acad Sci U S A 91:4431–4435

    Google Scholar 

Download references

Acknowledgements

This study was supported by European Union from the resources of the European Regional Development Fund under the Innovative Economy Programme (grant coordinated by JCET-UJ, No POIG.01.01.02-00-069/09). The tissues for histological and vibrational microscopy examples of atherosclerotic plaque analysis presented in this chapter were taken from ApoE/LDLR/ mice [128].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K.M. Marzec .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Marzec, K. et al. (2014). Vibrational Microspectroscopy for Analysis of Atherosclerotic Arteries. In: Baranska, M. (eds) Optical Spectroscopy and Computational Methods in Biology and Medicine. Challenges and Advances in Computational Chemistry and Physics, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7832-0_17

Download citation

Publish with us

Policies and ethics