Skip to main content

Fourier Transform Infrared (Ft-Ir) Spectroscopic Imaging for Solid Tumor Histopathology

  • Chapter
  • First Online:
  • 2714 Accesses

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 14))

Abstract

Fourier transform infrared (FT-IR) spectroscopic imaging has shown great promise in becoming a powerful tool in cytology and histopathology. Applications for cancer diagnoses in solid tumors are especially attractive as samples are spatially complex and involve myriad molecular changes whereas there are many shortcomings in current clinical practice that can be addressed. Here we review the current state of the art in applying FT-IR imaging for analyzing solid tumors. We focus on instrumentation that is relatively new, emerging fundamental understanding gained by new theoretical advances, data analysis and selected, illustrative applications in cancer histopathology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Many issues are summarized in [6].

  2. 2.

    Note that some texts refer to this practice as “False Color”. This term is misleading as all colors are true. “Color-coded” images or “Representative color” images are probably better monikers.

References

  1. Bhargava R (2012) Infrared spectroscopic imaging: the next generation. Appl Spectrosc 66(10):1091–120

    Article  CAS  Google Scholar 

  2. Bhargava R (Oct (2007) Towards a practical Fourier transform infrared chemical imaging protocol for cancer histopathology. Anal Bioanal Chem 389(4):1155–1169

    Article  Google Scholar 

  3. Srinivasan G, Bhargava R (Jul 2007) Fourier transform-infrared spectroscopic imaging: the emerging evolution from a microscopy tool to a cancer imaging modality. Spectroscopy 22(7):30

    Google Scholar 

  4. Levin IW, Bhargava R (5 May 2005) Fourier transform infrared vibrational spectroscopic imaging: integrating microscopy and molecular recognition. Annu Rev Phys Chem 56(1):429–474

    Google Scholar 

  5. Griffiths PR, de Haseth JA (2007) Fourier transform infrared spectrometry. Wiley, Hoboken

    Book  Google Scholar 

  6. Jackson M (2004) Biomolecules to biodiagnostics: spectroscopy does it all. Faraday Discuss 126:1–18

    Article  CAS  Google Scholar 

  7. Jackson M, Sowa MG, Mantsch HH (Oct 1997) Infrared spectroscopy: a new frontier in medicine. Biophys Chem 68(1–3):109–125

    Google Scholar 

  8. Diem M, Romeo M, Boydston-White S, Miljković M, Matthäus C (2004) A decade of vibrational micro-spectroscopy of human cells and tissue (1994-2004). Analyst 129(10):880–885

    Article  CAS  Google Scholar 

  9. Martin FL, Kelly JG, Llabjani V, Martin-Hirsch PL, Patel II, Trevisan J, Fullwood NJ, Walsh MJ (2010) Distinguishing cell types or populations based on the computational analysis of their infrared spectra. Nat Prot 5:1748–1760

    Article  CAS  Google Scholar 

  10. Diem M, Griffiths PR, Chalmers JM (eds) (2008) Vibrational spectroscopy for medical diagnosis. Wiley, Chichester

    Google Scholar 

  11. Fernandez DC, Bhargava R, Hewitt SM, Levin IW (2005) Infrared spectroscopic imaging for histopathologic recognition. Nat Biotechnol 23(4):469–474

    Article  CAS  Google Scholar 

  12. Colarusso P, Kidder LH, Levin IW, Fraser JC, Arens JF, Lewis EN (1998) Infrared spectroscopic imaging: from planetary to cellular systems. Appl Spectrosc 52:106a–120a

    Google Scholar 

  13. Walsh MJ, Reddy RK, Bhargava R (2012) Label-free biomedical imaging with mid-Infrared microspectroscopy. IEEE J Sel Top Quant 18:1502–1513

    Article  CAS  Google Scholar 

  14. Dumas P, Jamin N, Teillaud JL, Miller LM, Beccard B (2004) Imaging capabilities of synchrotron infrared microspectroscopy. Faraday Discuss 126:289–302. discussion 303–311

    Google Scholar 

  15. Miller LM, Dumas P (Jul 2006) Chemical imaging of biological tissue with synchrotron infrared light. Bio chim Bio phys Acta 1758(7):846–857

    Google Scholar 

  16. Dumas P, Sockalingum GD, Sule-Suso J (Jan 2007) Adding synchrotron radiation to infrared microspectroscopy: what’s new in biomedical applications? Trends Biotechnol 25(1):40–44

    Google Scholar 

  17. Hirschmugl CJ, Gough KM (May 2012) Fourier transform infrared spectrochemical imaging: review of design and applications with a focal plane array and multiple beam synchrotron radiation source. Appl Spectrosc 66(5):475–491

    Google Scholar 

  18. Bhargava R, Levin IW (eds) (2005) Spectrochemical analysis using infrared multichannel detectors. Blackwell Publishing, Oxford, pp 56–84

    Google Scholar 

  19. Lewis EN, Treado PJ, Reeder RC, Story GM, Dowrey AE, Marcott C, Levin IW (1995) Fourier transform spectroscopic imaging using an infrared focal-plane array detector. Anal Chem 67:3377–3381

    Article  CAS  Google Scholar 

  20. Bhargava R, Wall BG, Koenig JL (2000) Comparison of the FT-IR mapping and imaging techniques applied to polymeric systems. Appl Spectrosc 54:470–474

    Article  CAS  Google Scholar 

  21. Koenig JL, Wang SQ, Bhargava R (2001) FT-IR Images. Anal Chem 73:360A–369A

    Article  CAS  Google Scholar 

  22. Bhargava R, Levin IW (2003) Time-resolved Fourier transform infrared spectroscopic imaging. Appl Spectrosc 57:357–366

    Article  CAS  Google Scholar 

  23. Bhargava R, Levin IW (2003) Noninvasive imaging of molecular dynamics in heterogeneous materials. Macromolecules 36:92–96

    Article  CAS  Google Scholar 

  24. Bhargava R, Levin IW (2001) Fourier transform infrared imaging: theory and practice. Anal Chem 73:5157–5167

    Article  CAS  Google Scholar 

  25. Nasse MJ, Walsh MJ, Mattson EC, Reininger R, Kajdacsy-Balla A, Macias V et al (May 2011) High-resolution fourier-transform infrared chemical imaging with multiple synchrotron beams. Nat Methods 8(5):413–416

    Google Scholar 

  26. Walsh MJ, Mayerich D ,Kajdacsy-Balla A, Bhargava R (2012) High resolution mid-infrared Imaging for disease diagnosis. Proc. of SPIE Vol. 8219 82190R–1

    Google Scholar 

  27. Reddy RK, Walsh MJ, Schulmerich MV, Carney PS, Bhargava R (2013) High-definition infrared spectroscopic imaging. Appl Spectrosc 67:93–105

    Article  Google Scholar 

  28. Nasse MJ, Mattson E, Hirschmugl C (2010) First results from IRENI—rapid diffraction-limited high resolution imaging across the mid-infrared bandwidth. AIP Conference Proceedings 1214, pp 108–110

    Google Scholar 

  29. Stavitski E, Smith RJ, Bourassa MW, Acerbo AS, Carr GL, Miller LM (2013) Dynamic full-field infrared imaging with multiple synchrotron beams. Anal Chem 85(7):3599–3605

    Article  CAS  Google Scholar 

  30. Marcelli A, Cricenti A, Kwiatek WM, Petibois C (2012) Biological applications of synchrotron radiation infrared spectromicroscopy. Biotechnology Advances 30(6):1390–1404

    Article  CAS  Google Scholar 

  31. Petibois C, Cestelli-Guidi M, Piccinini M, Moenner M, Marcelli A (2010) Synchrotron radiation FTIR imaging in minutes: a first step towards real-time cell imaging. Anal Bioanal Chem 397(6):2123–2129

    Article  CAS  Google Scholar 

  32. Marcelli A, Cinque G (2011) Infrared synchrotron radiation beamlines: high brilliance tools for IR spectromicroscopy. RSC Analytical Spectroscopy Series, pp 67–104

    Google Scholar 

  33. Walsh MJ, Holton SE, Kajdacsy-Balla A, Bhargava R (2012) Attenuated total reflectance fourier transform infrared spectroscopic imaging for comprehensive breast tissue histopathology. Vib Spectrosc 60:23–28

    Article  CAS  Google Scholar 

  34. Kazarian SG, Chan KLA (2006) Applications of ATR-FTIR spectroscopic imaging to biomedical samples. Biochim Biophys Acta—Biomembranes 1758(7):858–867

    Google Scholar 

  35. Kazarian SG, Chan KLA (2013) ATR-FTIR spectroscopic imaging: recent advances and applications to biological systems. Analyst 138(7):1940–1951

    Article  CAS  Google Scholar 

  36. Bassan P, Byrne HJ, Bonnier F, Lee J, Dumas P, Gardner P (2009) Resonant Mie scattering in infrared spectroscopy of biological materials—understanding the ‘dispersion artefact’. Analyst 134(8):1586–1593

    Article  CAS  Google Scholar 

  37. Lee J, Gazi E, Dwyer J, Brown MD, Clarke NW, Nicholson JM, Gardner P (2007) Optical artefacts in transflection mode FTIR microspectroscopic images of single cells on a biological support: the effect of back-scattering into collection optics. Analyst 132(8):750–755

    Article  CAS  Google Scholar 

  38. Bassan P, Byrne HJ, Lee J, Bonnier F, Clarke C, Dumas P, Gazi E et al (2009) Reflection contributions to the dispersion artefact in FTIR spectra of single biological cells. Analyst 134(6):1171–1175

    Article  CAS  Google Scholar 

  39. Romeo M, Mohlenhoff B, Diem M (2006) Infrared micro-spectroscopy of human cells: causes for the spectral variance of oral mucosa (buccal) cells. Vib Spectrosc 42(1):9–14

    Article  CAS  Google Scholar 

  40. Filik J, Frogley MD, Pijanka JK, Wehbe K, Cinque G (2012) Electric field standing wave artefacts in FTIR micro-spectroscopy of biological materials. Analyst 137(4):853–861

    Article  CAS  Google Scholar 

  41. Wehbe K, Filik J, Frogley MD, Cinque G (2013) The effect of optical substrates on micro-FTIR analysis of single mammalian cells. Anal Bioanal Chem 405(4):1311–1324

    Article  CAS  Google Scholar 

  42. Gulley-Stahl HJ, Bledsoe SB, Evan AP, Sommer AJ (2010) The advantages of an attenuated total internal reflection infrared microspectroscopic imaging approach for kidney biopsy analysis. Appl Spectrosc 64(1):15–22

    Article  CAS  Google Scholar 

  43. Davis BJ, Carney PS, Bhargava R (2010) Theory of mid-infrared absorption microspectroscopy. II. Heterogeneous samples. Anal Chem 82:3487–3499

    Article  CAS  Google Scholar 

  44. Davis BJ, Carney PS, Bhargava R (2010) Theory of mid-infrared absorption microspectroscopy. I. Homogeneous samples. Anal Chem 82:3474–3486

    Article  CAS  Google Scholar 

  45. Davis BJ, Carney PS, Bhargava R (2011) Infrared microspectroscopy of intact fibers. Anal Chem 83:525–532

    Article  CAS  Google Scholar 

  46. van Dijk T, Mayerich D, Carney PS, Bhargava R (2013) Recovery of absorption spectra from Fourier transform infrared microspectroscopic measurements of intact spheres. Appl Spectrosc 67:546–552

    Article  CAS  Google Scholar 

  47. Miller LM, Dumas P (Jul 2006) Chemical imaging of biological tissue with synchrotron infrared light. Biochim Biophys Acta (BBA)—Biomembranes 1758(7):846-857, ISSN 0005-2736, http://dx.doi.org/10.1016/j.bbamem.2006.04.010

  48. Bhargava R, Fernandez DC, Hewitt SM, Levin IW (2006) High throughput assessment of cells and tissues: Bayesian classification of spectral metrics from infrared vibrational spectroscopic imaging data. Biochim Biophys Acta 1758:830–845

    Google Scholar 

  49. Kwak JT, Reddy RK, Sinha S, Bhargava R (2012) An analysis of the sources of variance in Fourier transform infrared spectroscopic imaging of tissues. Anal Chem 84:1063–1069

    Article  CAS  Google Scholar 

  50. Pounder NF et al. Proc. of SPIE vol 7182 718206–2

    Google Scholar 

  51. Fabian H, Lasch P, Boese M, Haensch W (16 Dec 2003) Infrared microspectroscopic imaging of benign breast tumor tissue sections. J Mol Struct 661:411–417

    Google Scholar 

  52. Fabian H, Lasch P, Boese M, Haensch W (2002) Mid-IR microspectroscopic imaging of breast tumor tissue sections. Biopolymers 67(4–5):354–357

    Article  CAS  Google Scholar 

  53. Fabian H, Thi NAN, Eiden M, Lasch P, Schmitt J, Naumann D (Jul 2006) Diagnosing benign and malignant lesions in breast tissue sections by using IR-microspectroscopy. Biochimica Et Biophysica Acta-Biomembranes 1758(7):874–882

    Google Scholar 

  54. Lyman DJ, Murray-Wijelath J (Jan 2005) Fourier transform infrared attenuated total reflection analysis of human hair: comparison of hair from breast cancer patients with hair from healthy subjects. Appl Spectrosc 59(1):26–32

    Google Scholar 

  55. BüttnerMostaço-Guidolin L, Murakami LS, RibeiroBatistuti M, Nomizo A, Bachmann L (2010) Molecular and chemical characterization by Fourier transform infrared spectroscopy of human breast cancer cells with estrogen receptor expressed and not expressed. Spectroscopy 24:501–510

    Article  Google Scholar 

  56. Holton SE, Walsh MJ, Kajdacsy-Balla A, Bhargava R (21 Sept 2011) Label-free characterization of cancer-activated fibroblasts using infrared spectroscopic imaging. Biophys J 101(6):1513–1521

    Article  CAS  Google Scholar 

  57. Holton SE, Bergamaschi A, Katzenellenbogen BS, Bhargava R (2012) A spectroscopic signature associated with hormone sensitivity in 3D co-culture models of breast cancer. AACR 103rd annual meeting, Chicago, March 31-April 4 2012

    Google Scholar 

  58. Baker R, Rogers KD, Shepherd N, Stone N (28 Sept 2010) New relationships between breast microcalcifications and cancer. Br J Cancer 103(7):1034–1039

    Google Scholar 

  59. Kwak JT, Hewitt SM, Sinha S, Bhargava R (9 Feb 2011) Multimodal microscopy for automated histologic analysis of prostate cancer. BMC Cancer 11:62

    Google Scholar 

  60. Baker MJ, Gazi E, Brown MD, Shanks JH, Clarke NW, Gardner P (Feb 2009) Investigating FTIR based histopathology for the diagnosis of prostate cancer. J Biophotonics 2(1–2):104–113

    Google Scholar 

  61. Mackanos MA, Contag CH (Dec 2009) FTIR microspectroscopy for improved prostate cancer diagnosis. Trends Biotechnol 27(12):661–663

    Google Scholar 

  62. Baker MJ, Gazi E, Brown MD, Shanks JH, Gardner P, Clarke NW (25 Nov 2008) FTIR-based spectroscopic analysis in the identification of clinically aggressive prostate cancer. Br J Cancer 99(11):1859–1866

    Google Scholar 

  63. Gazi E, Baker M, Dwyer J, Lockyer NP, Gardner P, Shanks JH et al (Oct 2006) A correlation of FTIR spectra derived from prostate cancer biopsies with gleason grade and tumour stage. Eur Urol 50(4):750–761

    Google Scholar 

  64. Gasper R, Goormaghtigh E (Dec 2010) Effects of the confluence rate on the FTIR spectrum of PC-3 prostate cancer cells in culture. Analyst 135(12):3048–3051

    Google Scholar 

  65. Gasper R, Mijatovic T, Benard A, Derenne A, Kiss R, Goormaghtigh E (Nov 2010) FTIR spectral signature of the effect of cardiotonic steroids with antitumoral properties on a prostate cancer cell line. Biochim Biophys Acta 1802(11):1087–1094

    Google Scholar 

  66. Gasper R, Mijatovic T, Kiss R, Goormaghtigh E (1 Jan 2010) FTIR spectroscopy reveals the concentration dependence of cellular modifications induced by anticancer drugs. Spectrosc Int J 24(1):45–49

    Article  CAS  Google Scholar 

  67. Derenne A, Gasper R, Goormaghtigh E (21 Mar 2011) The FTIR spectrum of prostate cancer cells allows the classification of anticancer drugs according to their mode of action. Analyst 136(6):1134–1141

    Article  CAS  Google Scholar 

  68. Patel II, Trevisan J, Singh PB, Nicholson CM, Krishnan RK, Matanhelia SS et al (Aug 2011) Segregation of human prostate tissues classified high-risk (UK) versus low-risk (india) for adenocarcinoma using fourier-transform infrared or ramanmicrospectroscopy coupled with discriminant analysis. Anal Bioanal Chem 401(3):969–982

    Google Scholar 

  69. Gazi E, Dwyer J, Gardner P, Ghanbari-Siahkali A, Wade AP, Miyan J et al (Sep 2003) Applications of fourier transform infrared microspectroscopy in studies of benign prostate and prostate cancer. A pilot study. J Pathol 201(1):99–108

    Google Scholar 

  70. Gazi E, Dwyer J, Lockyer NP, Gardner P, Shanks JH, Roulson J et al (Mar 2007) Biomolecular profiling of metastatic prostate cancer cells in bone marrow tissue using FTIR microspectroscopy: a pilot study. Anal Bioanal Chem 387(5):1621–1623

    Google Scholar 

  71. Khanmohammadi M, Garmarudi AB, Ghasemi K, Jaliseh HK, Kaviani A (2009) Diagnosis of colon cancer by attenuated total reflectance-fourier transform infrared microspectroscopy and soft independent modeling of class analogy. Med Oncol 26(3):292–297

    Article  Google Scholar 

  72. Khanmohammadi M, BagheriGarmarudi A, Samani S, Ghasemi K, Ashuri A (Jun 2011) Application of linear discriminant analysis and attenuated total reflectance fourier transform infrared microspectroscopy for diagnosis of colon cancer. Pathol Oncol Res 17(2):435–441

    Google Scholar 

  73. Lasch P, Haensch W, Lewis EN, Kidder LH, Naumann D (Jan 2002) Characterization of colorectal adenocarcinoma sections by spatially resolved FT-IR microspectroscopy. Appl Spectrosc 56(1):1–9

    Google Scholar 

  74. Li X, Li QB, Zhang GJ, Xu YZ, Sun XJ, Shi JS et al (2012) Identification of colitis and cancer in colon biopsies by fourier transform infrared spectroscopy and chemometrics. Sci World J 2012:936149

    Google Scholar 

  75. Walsh MJ et al Proc of SPIE Vol 8219 82190R–2

    Google Scholar 

  76. Mackanos MA, Hargrove J, Wolters R, Du CB, Friedland S, Soetikno RM et al (Jul-Aug 2009) Use of an endoscope-compatible probe to detect colonic dysplasia with fourier transform infrared spectroscopy. J Biomed Opt 14(4):044006

    Google Scholar 

  77. Yousef I, Breard J, SidAhmed-Adrar N, Maamer-Azzabi A, Marchal C, Dumas P et al (21 Dec 2011) Infrared spectral signatures of CDCP1-induced effects in colon carcinoma cells. Analyst 136(24):5162–5168

    Google Scholar 

  78. Kondepati VR, Heise HM, Oszinda T, Mueller R, Keese M, Backhaus J (11 Mar 2008) Detection of structural disorders in colorectal cancer DNA with fourier-transform infrared spectroscopy. Vib Spectrosc 46(2):150–157

    Article  CAS  Google Scholar 

  79. Tosi G, Conti C, Giorgini E, Ferraris P, Garavaglia MG, Sabbatini S et al FTIR microspectroscopy of melanocytic skin lesions: a preliminary study. Analyst (12):3213

    Google Scholar 

  80. Ly E, Piot O, Durlach A, Bernard P, Manfait M (Jun 2009) Differential diagnosis of cutaneous carcinomas by infrared spectral micro-imaging combined with pattern recognition. Analyst 134(6):1208–1214

    Google Scholar 

  81. Hammody Z, Argov S, Sahu RK, Cagnano E, Moreh R, Mordechai S (Mar 2008) Distinction of malignant melanoma and epidermis using IR micro-spectroscopy and statistical methods. Analyst 133(3):372–378

    Google Scholar 

  82. Mordechai S, Sahu RK, Hammody Z, Mark S, Kantarovich K, Guterman H et al (Jul 2004) Possible common biomarkers from FTIR microspectroscopy of cervical cancer and melanoma. J Microsc Oxf 215:86–91

    Google Scholar 

  83. Mostaço-Guidolin LB, Murakami LS, Nomizo A, Bachmann L (23 Jul 2009, Nov 2012) Fourier transform infrared spectroscopy of skin cancer cells and tissues. Appl Spectrosc Rev 44(5):438–455

    Google Scholar 

  84. Hammody Z, Sahu RK, Mordechai S, Cagnano E, Argov S (18 Mar 2005) Characterization of malignant melanoma using vibrational spectroscopy. Sci World J 5:173–182

    Google Scholar 

  85. Kong R, Reddy RK, Bhargava R (Jul 2010) Characterization of tumor progression in engineered tissue using infrared spectroscopic imaging. Analyst 135(7):1569–1578

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohit Bhargava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Biswas, S., Walsh, M., Bhargava, R. (2014). Fourier Transform Infrared (Ft-Ir) Spectroscopic Imaging for Solid Tumor Histopathology. In: Baranska, M. (eds) Optical Spectroscopy and Computational Methods in Biology and Medicine. Challenges and Advances in Computational Chemistry and Physics, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7832-0_16

Download citation

Publish with us

Policies and ethics