Skip to main content

Raman Spectra of Solid Amino Acids: Spectral Correlation Analysis as the First Step Towards Identification by Raman Spectroscopy

  • Chapter
  • First Online:
Optical Spectroscopy and Computational Methods in Biology and Medicine

Abstract

Raman spectra are presented for twenty proteinogenic amino acids, recorded for solid samples using four different laser wavelengths: 325, 514.5, 632.8, and 785 nm. In general, the intensity patterns are very similar for all excitation wavelengths. The spectra are analysed in terms of similarity. Possibilities of determination of amino acids in multicomponent powder mixtures are discussed and illustrated by examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aroca R (2006) Surface-enhanced vibrational spectroscopy. Wiley, Chichester

    Book  Google Scholar 

  2. Le Ru EC, Etchegoin PG (2008) Principles of surface-enhanced Raman spectroscopy. Elsevier Science

    Google Scholar 

  3. Zhu G, Zhu X, Fan Q, Wan X (2011) Spectrochim Acta A 78:1187

    Google Scholar 

  4. Boldyreva E (2007) In: Boeyens JCA, Ogilvie JF (eds) Models, mysteries and magic of molecules. Springer. p 167

    Google Scholar 

  5. Tanabe K, Saeki S (1975) Anal Chem 47:118

    Google Scholar 

  6. Li J, Hibbert DB, Fuller S, Vaughn G (2006) Chemometrics and intelligent laboratory systems 82:50

    Google Scholar 

  7. Culka A, Jehlicka J, Edwards HGM (2010) Spectrochim Acta A 77:978

    Google Scholar 

  8. Destrade C, Garrigou-Lagrange C, Forel MT (1971) J Mol Struct 10:203

    Google Scholar 

  9. Stenback H (1976) J Raman Spectrosc 5:49

    Google Scholar 

  10. Machida K, Kagayama A, Saito Y, Kuroda Y, Uno T (1977) Spectrochim Acta A 33:569

    Google Scholar 

  11. Kakihana M, Akiyama M, Nagumo T, Okamoto M (1988) Z Naturforsch A: Phys Sci 43:774

    Google Scholar 

  12. Stewart S, Fredericks PM (1999) Spectrochim Acta A 55:1641

    Google Scholar 

  13. Kumar S, Rai AK, Singh VB, Rai SB (2005) Spectrochim Acta A 61:2741

    Google Scholar 

  14. Murli C, Thomas S, Venkateswaran S, Sharma SM (2005) Physica B 364:233

    Google Scholar 

  15. Fukushima K, Onishi T, Shimanouchi T, Mizushima S (1959) Spectrochim Acta 236

    Google Scholar 

  16. Wang CH, Storms RD (1971) J Chem Phys 55:3291

    Google Scholar 

  17. Machida K, Kagayama A, Saito Y, Uno T (1978) Spectrochim Acta A 34:909

    Google Scholar 

  18. Susi H, Byler DM (1980) J Mol Struct 63:1

    Google Scholar 

  19. Forss S (1982) J Raman Spectrosc 12:266

    Google Scholar 

  20. Migliori A, Maxton PM, Clogston AM, Zirngiebl E, Lowe M (1988) Phys Rev B: Condens Matter 38:13464

    Google Scholar 

  21. Kettle SFA, Lugwisha E, Vorderwisch P, Eckert J (1990) Spectrochim Acta A 46:921

    Google Scholar 

  22. Gong Y, Wang W-q (2006) Guangpuxue Yu Guangpu Fenxi 26:90

    Google Scholar 

  23. Vijayan N, Rajasekaran S, Bhagavannarayana G, Babu RR, Gopalakrishnan R, Palanichamy M, Ramasamy P (2006) Cryst Growth Des 6:2441

    Google Scholar 

  24. Gong Y, Zhao J, Chin BY, Wang W (2008) Proc China Assoc Sci Technol 4:187

    Google Scholar 

  25. Goncalves RO, Freire PTC, Bordallo HN, Lima JA Jr, Melo FEA, Mendes FJ, Argyriou DN, Lima RJC (2009) J Raman Spectrosc 40:958

    Google Scholar 

  26. Belo EA, Lima JA Jr, Freire PTC, Melo FEA, Mendes FJ, Bordallo HN, Polian A (2010) Vib Spectrosc 54:107

    Google Scholar 

  27. Alabanza AM, Pozharski E, Aslan K (2012) Cryst Growth Des 12:346

    Google Scholar 

  28. Dhanaraj G, Srinivasan MR, Bhat HL (1991) J Raman Spectrosc 22:177

    Google Scholar 

  29. Lima RJC, Freire PTC, Sasaki JM, Melo FEA, Mendes FJ (2002) J Raman Spectrosc 33:625

    Google Scholar 

  30. Haussuehl S, Karapetyan HA, Sukiasyan RP, Petrosyan AM (2006) Cryst Growth Des 6:2041

    Google Scholar 

  31. Aliaga AE, Garrido C, Leyton P, Diaz FG, Gomez-Jeria JS, Aguayo T, Clavijo E, Campos-Vallette MM, Sanchez-Cortes S (2010) Spectrochim Acta A 76:458

    Google Scholar 

  32. Faria JLB, Freire PTC, Goncalves RO, Melo FEA, Mendes FJ, Lima RJC, Moreno AJD (2010) Braz J Phys 40:288

    Google Scholar 

  33. Casado J, Lopez NJT, Ramirez FJ (1995) J Raman Spectrosc 26:1003

    Google Scholar 

  34. Bento ICV, Freire PTC, Melo FEA, Mendes Filho J, Moreno AJD, Joya MR, Pizanic PS (2007) Solid State Commun 141:29

    Google Scholar 

  35. Lopez NJT, Hernandez V, Ramirez FJ (1994) Biopolymers 34:1065

    Google Scholar 

  36. Madec C, Lauransan J, Garrigou-Lagrange C (1980) Can J Spectrosc 25:47

    Google Scholar 

  37. Susi H, Byler DM, Gerasimowicz WV (1983) J Mol Struct 102:63

    Google Scholar 

  38. Pawlukojc A, Leciejewicz J, Ramirez-Cuesta AJ, Nowicka-Scheibe J (2005) Spectrochim Acta A 61:2474

    Google Scholar 

  39. Mink J, Hajba L, Mihály J, Németh C, Pálmai M, Sandström M (2012) Appl Spectrosc Rev 47:415

    Google Scholar 

  40. Dhamelincourt P, Ramirez FJ (1993) Appl Spectrosc 47:446

    Google Scholar 

  41. Wang W-N, Wang G, Zhang Y (2011) Chin Phys B 20:123301/1

    Google Scholar 

  42. Dhamelincourt P, Ramirez FJ (1991) J Raman Spectrosc 22:577

    Google Scholar 

  43. Luz-Lima C, De SGP, Lima JA Jr, Melo FEA, Mendes FJ, Polian A, Freire PTC (2012) Vib Spectrosc 58:181

    Google Scholar 

  44. Almeida FM, Freire PTC, Lima RJC, Remédios CMR, Mendes Filho J, Melo FEA (2006) J Raman Spectrosc 37:1296

    Google Scholar 

  45. Sabino AS, De SGP, Luz-Lima C, Freire PTC, Melo FEA, Mendes FJ (2009) Solid State Commun 149:1553

    Google Scholar 

  46. Krishnan RS, Sankaranarayanan VN, Krishnan K (1973) J Indian Inst Sci 55:66

    Google Scholar 

  47. Bougeard D (1983) Ber Bunsenges Phys Chem 87:279

    Google Scholar 

  48. Guicheteau J, Argue L, Hyre A, Jacobson M, Christesen SD (2006) Proc SPIE-Int Soc Opt Eng 6218:62180O/1

    Google Scholar 

  49. Façanha Filho PF, Freire PTC, Lima KCV, Mendes Filho j, Melo FEA (2008) Braz J Phys 38:131

    Google Scholar 

  50. Façanha Filho PF, Freire PTC, Melo FEA, Lemos V, Mendes FJ, Pizani PS, Rossatto DZ (2009) J Raman Spectrosc 40:46

    Google Scholar 

  51. Facanha FPF, Jiao X, Freire PTC, Lima JA Jr, dos SAO, Henry PF, Yokaichiya F, Kremner E, Bordallo HN (2011) Phys Chem Chem Phys 13:6576

    Google Scholar 

  52. Kumar S (2011) Elixir Online J 4996

    Google Scholar 

  53. Kumar S, Rai AK, Rai SB, Rai DK (2010) Indian J Phys 84:563

    Google Scholar 

  54. Syamala D, Rajendran V, Natarajan RK, Babu SM (2007) Cryst Growth Des 7:1695

    Google Scholar 

  55. Aliaga AE, Osorio-Roman I, Garrido C, Leyton P, Carcamo J, Clavijo E, Gomez-Jeria JS, Diaz FG, Campos-Vallette MM (2009) Vib Spectrosc 50:131

    Google Scholar 

  56. Abello L, Genet F, Nigretto JM, Lucazeau G (1989) Surf Sci 215:158

    Google Scholar 

  57. Lima JA Jr, Freire PTC, Melo FEA, Lemos V, Mendes FJ, Pizani PS (2008) J Raman Spectrosc 39:1356

    Google Scholar 

  58. Pawlukojc A, Leciejewicz J, Tomkinson J, Parker SF (2001) Spectrochim Acta A 57:2513

    Google Scholar 

  59. Herlinger AW, Long TV II (1970) J Amer Chem Soc 92:6481

    Google Scholar 

  60. Podstawka E, Ozaki Y, Proniewicz LM (2004) Appl Spectrosc 58:570

    Google Scholar 

  61. Kapitan J, Baumruk V, Kopecky V Jr, Pohl R, Bour P (2006) J Am Chem Soc 128:13451

    Google Scholar 

  62. Carcamo JJ, Aliaga AE, Clavijo E, Garrido C, Gomez-Jeria JS, Campos-Vallette MM (2012) J Raman Spectrosc 43:750

    Google Scholar 

  63. Madec C, Lauransan J, Garrigou-Lagrange C (1978) Can J Spectrosc 23:166

    Google Scholar 

  64. Machida K, Izumi M, Kagayama A (1979) Spectrochim Acta A 35:1333

    Google Scholar 

  65. Madec C, Lauransan J, Garrigou-Lagrange C (1979) C R. Hebd. Seances Acad Sci Ser B 288;69

    CAS  Google Scholar 

  66. Murli C, Vasanthi R, Sharma SM (2006) Chem Phys 331:77

    Google Scholar 

  67. Kolesov BA, Boldyreva EV (2007) J Phys Chem B 111:14387

    Google Scholar 

  68. Miura T, Takeuchi H, Harada I (1989) J Raman Spectrosc 20:667

    Google Scholar 

  69. Gorelik VS, Zlobina LI, Sardarly RM (1990) Kratk Soobshch Fiz 33

    Google Scholar 

  70. Mohan S, Puviarasan N, Bakkialakshmi S (1999) Asian J Chem 11:1137

    Google Scholar 

  71. Siddiqui SA, Pandey AK, Dwivedi A, Jain S, Misra N (2010) J Chem Pharm Res 2:835

    Google Scholar 

  72. Lima Jr JA, Freire PTC, Lima RJC, Moreno AJD, Mendes Filho J, Melo FEA (2005) J Raman Spectrosc 36:1076

    Google Scholar 

  73. da Silva JH, Lima Jr JA, Freire PTC, Lemos V, Mendes Filho J, Melo FEA, Pizani PS, Fischer J, Klemke B, Kemner E, Bordallo HN (2009) J Phys: Condens Matter 21:415404

    Google Scholar 

  74. Storn R, Price K (1997) J Global Optim 11:341

    Google Scholar 

  75. Lance GN, Williams WT (1966) Comput J 9:60

    Google Scholar 

  76. Jurman G, Riccadonna S, Visintainer R, Furlanello C (2009) In: Agrawal S, Burges C, Crammer K (eds) Advances in Ranking, NIPS 09 Workshop. p 22

    Google Scholar 

  77. Wu J, Gan M, Zhang W, Jiang R (2011) Int J Biosci Biochem Bioinform 1:102

    Google Scholar 

Download references

Acknowledgements

The research was supported by the European Union within European Regional Development Fund, through grant Innovative Economy (POIG.01.01.02-00-008/08).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacek Waluk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Roliński, T., Gawinkowski, S., Kamińska, A., Waluk, J. (2014). Raman Spectra of Solid Amino Acids: Spectral Correlation Analysis as the First Step Towards Identification by Raman Spectroscopy. In: Baranska, M. (eds) Optical Spectroscopy and Computational Methods in Biology and Medicine. Challenges and Advances in Computational Chemistry and Physics, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7832-0_12

Download citation

Publish with us

Policies and ethics