Skip to main content

Structural and Spatial Analysis of Carotenoids in a Single Cell Monitored by Raman Spectroscopy

  • Chapter
  • First Online:

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 14))

Abstract

Carotenoids are particularly convenient subjects to study by means of Raman spectroscopy due to very high Raman scattering cross-section associated with their chain vibrations. Raman studies of carotenoids in single cells have a variety of applications starting from monitoring of growth and morphogenesis of unicellular algae and ending with differentiation of cancerous versus non-cancerous tissues in humans. Examples illustrating the potential of Raman spectroscopy to investigate carotenoids structure and distribution with a particular impact on studies using chemometric and computational methods as a tool to analyze experimental data are reviewed in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Koyama Y (1995) Resonance Raman spectroscopy. In: Britton G (ed) Carotenoids Volume 1B: Spectroscopy, Birkhäuser Verlag AG, Basel, p 135–146

    Google Scholar 

  2. Ermakov IV, Sharifzadeh M, Ermakova M et al (2005) Resonance Raman detection of carotenoid antioxidants in living human tissue. J Biomed Opt 10:064028–064018

    Article  Google Scholar 

  3. Gellermann W, Bernstein PS (2004) Noninvasive detection of macular pigments in the human eye. J Biomed Opt 9:75–85

    Article  CAS  Google Scholar 

  4. Briviba K, Bornemann R, Lemmer U (2006) Visualization of astaxanthin localization in HT29 human colon adenocarcinoma cells by combined confocal resonance Raman and fluorescence microspectroscopy. Mol Nutr Food Res 50:991–995

    Article  CAS  Google Scholar 

  5. Shen A, Ye Y, Zhang J et al (2005) Screening of gastric carcinoma cells in the human malignant gastric mucosa by confocal Raman microspectroscopy. Vib Spectrosc 37:225–231

    Article  CAS  Google Scholar 

  6. Brozek-Pluska B, Musial J, Kordek R et al (2012) Raman spectroscopy and imaging: applications in human breast cancer diagnosis. Analyst 137:3773

    Article  CAS  Google Scholar 

  7. Ramoji A, Neugebauer U, Bocklitz T et al (2012) Toward a spectroscopic hemogram: Raman spectroscopic differentiation of the two most abundant leukocytes from peripheral blood. Anal Chem 84:5335–5342

    Article  CAS  Google Scholar 

  8. Pully V, Lenferink A, Otto C (2011) Time-lapse Raman imaging of single live lymphocytes. J Raman Spectrosc 42:167–173

    Article  CAS  Google Scholar 

  9. Puppels G, Garritsen H, Kummer J et al (2005) Carotenoids located in human lymphocyte subpopulations and natural killer cells by Raman microspectroscopy. Cytometry 14:251–256

    Article  Google Scholar 

  10. Bakker Schut TC, Puppels GJ, Kraan YM et al (1997) Intracellular carotenoid levels measured by Raman microspectroscopy: comparison of lymphocytes from lung cancer patients and healthy individuals. Int J Canc Prev 74:20–25

    CAS  Google Scholar 

  11. Majzner K, Kaczor A, Kachamakova-Trojanowska N et al (2013) 3D confocal Raman imaging of endothelial cells and vascular wall: perspectives in analytical spectroscopy of biomedical research. Analyst 138:603–610

    Article  CAS  Google Scholar 

  12. Reddy RK, Bhargava R (2010) Chemometric Methods or Biomedical Raman Spectroscopy and Imaging. In: Matousek P (ed) Emerging Raman applications and techniques in biomedical and pharmaceutical fields. Springer Berlin Heidelberg, p 179–213

    Google Scholar 

  13. Heraud P, Wood BR, Beardall J et al (2006) Effects of pre-processing of Raman spectra on in vivo classification of nutrient status of microalgal cells. J Chemom 20:193–197

    Article  CAS  Google Scholar 

  14. Heraud P, Beardall J, McNaughton D et al (2007) In vivo prediction of the nutrient status of individual microalgal cells using Raman microspectroscopy. FEMS Microbiol Lett 275:24–30

    Article  CAS  Google Scholar 

  15. Abbas A, Josefson M, Abrahamsson K (2011) Characterization and mapping of carotenoids in the algae Dunaliella and Phaeodactylum using Raman and target orthogonal partial least squares. Chemometr Intell Lab 107:174–177

    Article  CAS  Google Scholar 

  16. Milledge JJ (2011) Commercial application of microalgae other than as biofuels: a brief review. Rev Environ Sci Biotechnol 10:31–41

    Article  Google Scholar 

  17. Brennan L, Owende P (2010) Biofuels from microalgae—a review of technologies for production, processing, and extractions of biofuels and co-products. Renev Sust Energ Rev 14:557–577

    Article  CAS  Google Scholar 

  18. Spolaore P, Joannis-Cassan C, Duran E et al (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96

    Article  CAS  Google Scholar 

  19. Collins AM, Jones HD, Han D et al (2011) Carotenoid distribution in living cells of Haematococcus pluvialis (Chlorophyceae). PLoS One 6:e24302

    Article  CAS  Google Scholar 

  20. Tao Z, Wang G, Xu X et al (2011) Monitoring and rapid quantification of total carotenoids in Rhodotorula glutinis cells using laser tweezers Raman spectroscopy. FEMS Microbiol Lett 314:42–48

    Article  CAS  Google Scholar 

  21. Pilat Z, Bernatova S, Jezek J et al (2012) Raman microspectroscopy of algal lipid bodies: beta-carotene quantification. J Appl Phycol 24:541–546

    Article  CAS  Google Scholar 

  22. Han R-M, Zhang J-P, Skibsted LH (2012) Reaction Dynamics of Flavonoids and Carotenoids as Antioxidants. Molecules 17:2140–2160

    Article  CAS  Google Scholar 

  23. Wormit M, Dreuw A (2007) Quantum chemical insights in energy dissipation and carotenoid radical cation formation in light harvesting complexes. Phys Chem Chem Phys 9:2917–2931

    Article  CAS  Google Scholar 

  24. Wormit M, Dreuw A (2006) Carotenoid radical cation formation in LH2 of purple bacteria: a quantum chemical study. J Phys Chem 110:24200–24206

    CAS  Google Scholar 

  25. Walla PJ, Linden PA, Hsu C-P et al (2000) Femtosecond dynamics of the forbidden carotenoid S1 state in light-harvesting complexes of purple bacteria observed after two-photon excitation. Natl Acad Sci 97:10808–10813

    Article  CAS  Google Scholar 

  26. Wang Y, Hu X (2002) A quantum chemistry study of binding carotenoids in the bacterial light-harvesting complexes. J Am Chem Soc 124:8445–8451

    Article  CAS  Google Scholar 

  27. Neugebauer J, Veldstra J, Buda F (2011) Theoretical Spectroscopy of Astaxanthin in Crustacyanin Proteins: Absorption, Circular Dichroism, and Nuclear Magnetic Resonance. J Phys Chem B 115:3216

    Article  CAS  Google Scholar 

  28. van Wijk AA, Spaans A, Uzunbajakava N et al (2005) Spectroscopy and quantum chemical modeling reveal a predominant contribution of excitonic interactions to the bathochromic shift in α-crustacyanin, the Blue carotenoprotein in the carapace of the lobster Homarus gammarus. J Am Chem Soc 127:1438–1445

    Article  CAS  Google Scholar 

  29. Kaczor A, Turnau K, Baranska M (2011) In situ Raman imaging of astaxanthin in a single microalgal cell. Analyst 136:1109–1112

    Article  CAS  Google Scholar 

  30. Kaczor A, Baranska M (2011) Structural Changes of Carotenoid Astaxanthin in a Single Algal Cell Monitored in Situ by Raman Spectroscopy. Anal Chem 83:7763–7770

    Article  CAS  Google Scholar 

  31. Kubo Y, Ikeda T, Yang S-Y et al (2000) Orientation of carotenoid molecules in the eyespot of alga: In Situ polarized resonance Raman spectroscopy. Appl Spectrosc 54:1114–1119

    Article  CAS  Google Scholar 

  32. Urban PL, Schmid T, Amantonico A et al (2011) Multidimensional analysis of single algal cells by integrating microspectroscopy with mass spectrometry. Anal Chem 83:1843–1849

    Article  CAS  Google Scholar 

  33. Huang Y, Beal C, Cai W et al (2010) Micro-Raman spectroscopy of algae: composition analysis and fluorescence background behavior. Biotechnol Bioeng 105:889–898

    CAS  Google Scholar 

  34. He X, Allen J, Black P et al (2012) Coherent anti-Stokes Raman scattering and spontaneous Raman spectroscopy and microscopy of microalgae with nitrogen depletion. Biomed Opt Express 3:2896

    Article  CAS  Google Scholar 

  35. Lu F-K, Ji M, Fu D et al (2012) Multicolor stimulated Raman scattering microscopy. Mol Phys 110:1927–1932

    Article  CAS  Google Scholar 

  36. Boussiba S (2000) Carotenogenesis in the green alga Haematococcus pluvialis: cellular physiology and stress response. Physiol Plant 108:111–117

    Article  CAS  Google Scholar 

  37. Fan L, Vonshak A, Boussiba S (1994) Effect of temperature and irradiance on growth of Haematococcus Pluvialis (Chlorophyceae). J Phycol 30:829–833

    Article  Google Scholar 

  38. Tjahjono AE, Hayama Y, Kakizono T et al (1994) Hyper-accumulation of astaxanthin in a green alga Haematococcus pluvialis at elevated temperatures. Biotechnol Lett 16:133–138

    Article  CAS  Google Scholar 

  39. Baranska M, Baranski R, Grzebelus E et al (2011) In situ detection of a single carotenoid crystal in a plant cell using Raman microspectroscopy. Vib Spectrosc 56:166–169

    Article  CAS  Google Scholar 

  40. Lopez-Sanchez P, Schumm S, Pudney PD et al (2011) Carotene location in processed food samples measured by Cryo In-SEM Raman. Analyst 136:3694–3697

    Article  CAS  Google Scholar 

  41. Arikan Ş, Sands H, Rodway R et al (2002) Raman spectroscopy and imaging of β-carotene in live corpus luteum cells. Anim Reprod Sci 71:249–266

    Article  CAS  Google Scholar 

  42. O’Fallon JV, Chew BP (1984) The subcellular distribution of β-carotene in bovine corpus luteum. In: Proceedings of the Society for Experimental Biology and Medicine Society for Experimental Biology and Medicine (New York, NY), vol 177, p 406–411

    Google Scholar 

  43. Rusciano G, Pesce G, Salemme M et al (2010) Raman spectroscopy of Xenopus laevis oocytes. Methods 51:27–36

    Article  CAS  Google Scholar 

  44. Dumont JN (1972) Oogenesis in Xenopus laevis (Daudin). I. Stages of oocyte development in laboratory maintained animals. J Morphol 136:153–179

    Article  CAS  Google Scholar 

  45. Ramanauskaite RB, Segers-Nolten I, Grauw Kd et al (1997) Carotenoid levels in human lymphocytes, measured by Raman microspectroscopy. Pure Appl Chem 69:2131–2134

    Article  CAS  Google Scholar 

  46. Abramczyk H, Brozek-Pluska B, Surmacki J et al (2011) Raman ‘optical biopsy’of human breast cancer. Prog Biophys Mol Biol 108:74–81

    Article  Google Scholar 

  47. Abramczyk H, Brozek-Pluska B, Surmacki J et al (2011) The label-free Raman imaging of human breast cancer. J Mol Liq 164:123–131

    Article  CAS  Google Scholar 

  48. Puppels G, Garritsen H, Segers-Nolten G et al (1991) Raman microspectroscopic approach to the study of human granulocytes. Biophys J 60:1046–1056

    Article  CAS  Google Scholar 

  49. Bankapur A, Zachariah E, Chidangil S et al (2010) Raman tweezers spectroscopy of live, single red and white blood cells. PLoS One 5:e10427

    Article  Google Scholar 

  50. Chew BP, Park JS (2004) Carotenoid action on the immune response. J Nutr 134:257S–261S

    CAS  Google Scholar 

  51. Bolin AP, Macedo RC, Marin DP et al (2010) Astaxanthin prevents in vitro auto-oxidative injury in human lymphocytes. Cell Biol Toxicol 26:457–467

    Article  CAS  Google Scholar 

  52. Jyonouchi H, Hill RJ, Tomita Y et al (1991) Studies of immunomodulating actions of carotenoids. 1. Effects of b-carotene and astaxanthin on murine lymphocyte functions and cell surface marker expression in vitro culture system. Nutr Cancer 16:93–105

    Article  CAS  Google Scholar 

  53. Stacewicz-Sapuntzakis M, Bowen P, Kikendall J et al (1987) Simultaneous determination of serum retinol and various carotenoids: their distribution in middle-aged men and women. J Micronutr Anal 3:27–45

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnieszka Kaczor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kaczor, A., Pilarczyk, M. (2014). Structural and Spatial Analysis of Carotenoids in a Single Cell Monitored by Raman Spectroscopy. In: Baranska, M. (eds) Optical Spectroscopy and Computational Methods in Biology and Medicine. Challenges and Advances in Computational Chemistry and Physics, vol 14. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7832-0_11

Download citation

Publish with us

Policies and ethics