Skip to main content

Asian Dust, Eolian Iron and Black Carbon—Connections to Climate Changes

  • Chapter
  • First Online:
Book cover Late Cenozoic Climate Change in Asia

Part of the book series: Developments in Paleoenvironmental Research ((DPER,volume 16))

Abstract

This chapter focuses on the aridification of the Asian interior during the Late Cenozoic, with an emphasis on modern dust and black carbon, and examines global iron connections which originate from dust derived from the arid interior of Asia. The modern formation of Asian dust, the connection of black carbon, paleofires and climate change, and relationships among dust, global iron cycles, marine productivity and climate change were discussed. The aridification history of the Asian interior were reconstructed from Chinese loess record.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As more chemical data have become available, Asian dust is now known to actually contain about 7 % Al (and 4 % Fe) by weight Zhang, X.Y., Gong, S.L., Shen, Z.X., Mei, F.M., Xi, X.X., Liu, L.C., Zhou, Z.J., Wang, D., Wang, Y.Q., Cheng, Y., 2003a. Characterization of soil dust aerosol in China and its transport/distribution during 2001 ACE-Asia. 1. Network Observations. J. Geophys. Res 108, doi:10.1029/1004 2002JD002632.

  2. 2.

    Mineral dust also absorbs sunlight but due to its strong reflective characteristics, it is generally thought to be an agent of atmospheric cooling.

  3. 3.

    Radiative forcing is the change in stratospherically adjusted radiative flux at the tropopause, compared to 1750AD as defined by the Intergovernmental Panel on Climate Change Forster, P.V., Ramaswamy, V., Artaxo, P., Berntsen, T., Betts, R., Fahey, D.W., Haywood, J., Lean, J., Lowe, D.C., Myhre, G., Nganga, J., R. Prinn, Raga, G., Schulz, M., Dorland, R.V., 2007. Changes in atmospheric constituents and in radiative forcing. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

References

  • Aggarwal SG, Kawamura K (2009) Carbonaceous and inorganic composition in long-range transported aerosols over northern Japan: implication for aging of water-soluble organic fraction. Atmos Environ 43:2532–2540

    CAS  Google Scholar 

  • Alfaro SC, Gaudichet A, Gomes L, Maille M (1997) Modeling the size distribution of a soil aerosol produced by sandblasting. J Geophys Res 102:11239–11249

    Google Scholar 

  • An ZS, Kukla G, Porter SC, Xiao JL (1991a) Late quaternary dust flow on the Chinese Loess plateau. Catena 18:125–132

    Google Scholar 

  • An ZS, Kukla GJ, Porter SC et.al (1991b) Late quaternary dust flow on the Chinese Loess plateau. Catena 18:125–132

    Google Scholar 

  • An ZS, Sun DH, Zhang XY, Zhou WJ, Porter SC, Chappell J, Shaw J, Zhang DZ (1995) Accumulation sequence of Chinese loess and climatic records of Greenland ice core during the last 130 kyr. Chin Sci Bull 40:15

    Google Scholar 

  • Andreae MO (1995) Climate effects of changing atmospheric aerosol levels. In: Henderson-Sellers A (eds) World survey of climatology, future climates of the world. Elsevier, Amsterdam, pp 341–392

    Google Scholar 

  • Andreae MO, Gelencser A (2006) Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmos Chem Phys 6:3131–3148

    CAS  Google Scholar 

  • Andreae MO, Merlet P (2001) Emission of trace gases and aerosols from biomass burning. Global Biogeochem Cycles 15:955–966

    CAS  Google Scholar 

  • Bergametti G (1998) Mineral aerosols: renewed interest for climate forcing and tropospheric chemistry studies. IGACtivities Newsletter 1:13–17

    Google Scholar 

  • Bird MI, Cali JA (1998) A million-year record of fire in sub-Saharan Africa. Nature 394:767–769

    Google Scholar 

  • Bird MI, Cali JA (2002) A revised high-resolution oxygen-isotope chronology for ODP-668B: implications for quaternary biomass burning in Africa. Global Planet Change 33:73–76

    Google Scholar 

  • Bonasoni P, Laj P, Marinoni A, Sprenger M, Angelini F, Arduini J, Bonafe U, Calzolari F, Colombo T, Decesari S, Di Biagio C, di Sarra AG, Evangelisti F, Duchi R, Facchini MC, Fuzzi S, Gobbi GP, Maione M, Panday A, Roccato F, Sellegri K, Venzac H, Verza GP, Villani P, Vuillermoz E, Cristofanelli P (2010) Atmospheric brown clouds in the Himalayas: first two years of continuous observations at the Nepal climate observatory-pyramid (5079 m). Atmos Chem Phys 10:7515–7531

    CAS  Google Scholar 

  • Bond G, Broecker W, Johnsen S et.al (1993) Correlations between climate records from North Atlantic sediments and Greenland ice. Nature 365:143–147

    Google Scholar 

  • Bond G, Kromer B, Beer J, Muscheler R, Evans MN, Showers W, Hoffmann S, Lotti-Bond R, Hajdas I, Bonani G (2001) Persistent solar influence on north Atlantic climate during the Holocene. Science 294:2130–2136

    CAS  Google Scholar 

  • Bond G, Showers W, Cheseby M, Lotti R, Almasi P, deMenocal P, Priore P, Cullen H, Hajdas I, Bonani G (1997) A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science 278:1257–1266

    CAS  Google Scholar 

  • Bond TC, Bhardwaj E, Dong R, Jogani R, Jung SK, Roden C, Streets DG, Trautmann NM (2007) Historical emissions of black and organic carbon aerosol from energy-related combustion. Global Biogeochem Cycles 21:1850–2000

    Google Scholar 

  • Bond TC, Covert DS, Kramlich JC, Larson TV, Charlson RJ (2002a) Primary particle emissions from residential coal burning: Optical properties and size distributions. J Geophys Res 107:8347

    Google Scholar 

  • Bond TC, Covert DS, Kramlich JC, Larson TV, Charlson RJ (2002b) Primary particle emissions from residential coal burning: optical properties and size distributions. J Geophys Res:107

    Google Scholar 

  • Bond TC, Streets DG, Yarber KF, Nelson SM, Woo JH, Klimont Z (2004) A technology-based global inventory of black and organic carbon emissions from combustion. J Geophys Res:109

    Google Scholar 

  • Broecker WS (1994) Massive iceberg discharges as triggers for global climate change. Nature 372:421–424

    CAS  Google Scholar 

  • Cao J, Shen Z, Chow JC, Qi G, Watson JG (2009) Seasonal variations and sources of mass and chemical composition for PM10 aerosol in Hangzhou, China. Particuology 7:161–168

    CAS  Google Scholar 

  • Cao JJ, Lee SC, Chow JC, Watson JG, Ho KF, Zhang RJ, Jin ZD, Shen ZX, Chen GC, Kang YM, Zou SC, Zhang LZ, Qi SH, Dai MH, Cheng Y, Hu K (2007) Spatial and seasonal distributions of carbonaceous aerosols over China. J Geophys Res:112

    Google Scholar 

  • Cao JJ, Lee SC, Ho KF, Zhang XY, Zou SC, Fung K, Chow JC, Watson JG (2003) Characteristics of carbonaceous aerosol in Pearl river delta region, China during 2001 winter period. Atmos Environ 37:1451–1460

    CAS  Google Scholar 

  • Carcaillet C, Almquist H, Asnong H, Bradshaw RHW, Carrion JS, Gaillard MJ, Gajewski K, Haas JN, Haberle SG, Hadorn P, Muller SD, Richard PJH, Richoz I, Rosch M, Goni MFS, von Stedingk H, Stevenson AC, Talon B, Tardy C, Tinner W, Tryterud E, Wick L, Willis KJ (2002) Holocene biomass burning and global dynamics of the carbon cycle. Chemosphere 49:845–863

    CAS  Google Scholar 

  • CAS (1998) Chinese desertification map, resource and environment database. Chinese Academy of Sciences, Beijing

    Google Scholar 

  • Chakrabarty RK, Moosmuller H, Chen LWA, Lewis K, Arnott WP, Mazzoleni C, Dubey MK, Wold CE, Hao WM, Kreidenweis SM (2010) Brown carbon in tar balls from smoldering biomass combustion. Atmos Chem Phys 10:6363–6370

    CAS  Google Scholar 

  • Chan CY, Xu XD, Li YS, Wong KH, Ding GA, Chan LY, Cheng XH (2005) Characteristics of vertical profiles and sources of PM2.5, PM10 and carbonaceous species in Beijing. Atmos Environ 39:5113–5124

    CAS  Google Scholar 

  • Chen W, Fryrear DW, Yang Z (1999) Dust fall in the Takla Makan desert of China. Phys Geogr 20:189–224

    Google Scholar 

  • Chow JC, Watson JG, Pritchett LC, Pierson WR, Frazier CA, Purcell RG (1993) The dri thermal/optical reflectance carbon analysis system: description, evaluation and applications in US air quality studies. Atmosph Environ 27:1185–1201

    Google Scholar 

  • Chylek P, Johnson B, Wu H (1992) Black carbon concentration in Byrd station ice core—from 13,000 to 700 years before present. Ann Geophys-Atmos Hydrosph Space Sci 10:625–629

    CAS  Google Scholar 

  • Clark JS (1988) Particle motion and the theory of charcoal analysis—source area, transport, deposition, and sampling. Quaternary Res 30:67–80

    Google Scholar 

  • Cofer WR, Koutzenogii KP, A. Kokorin, A .Ezcurra (1997) Biomass burning emissions and the atmosphere. Springer, Berlin

    Google Scholar 

  • Conedera M, Tinner W, Neff C, Meurer M, Dickens AF, Krebs P (2009) Reconstructing past fire regimes: methods, applications, and relevance to fire management and conservation. Quaternary Sci Rev 28:555–576

    Google Scholar 

  • Cope MJ, Chaloner WG (1980) Fossil charcoal as evidence of past atmospheric composition. Nature 283:647–649

    CAS  Google Scholar 

  • Crutzen PJ, Andreae MO (1990) Biomass burning in the tropics—impact on atmospheric chemistry and biogeochemical cycles. Science 250:1669–1678

    CAS  Google Scholar 

  • Daniau AL, d’Errico F, Goni MFS (2010a) Testing the hypothesis of fire use for ecosystem management by Neanderthal and upper palaeolithic modern human Populations. Plos One:5

    Google Scholar 

  • Daniau AL, Goni MFS, Duprat J (2009) Last glacial fire regime variability in western France inferred from microcharcoal preserved in core MD04–2845, Bay of Biscay. Quaternary Res 71:385–396

    CAS  Google Scholar 

  • Daniau AL, Harrison SP, Bartlein PJ (2010b) Fire regimes during the Last Glacial. Quaternary science reviews in press, corrected proof

    Google Scholar 

  • Daniau AL, Harrison SP, Bartlein PJ (2010c) Fire regimes during the last glacial. Quaternary Sci Rev 29:2918–2930

    Google Scholar 

  • Dansgaard W, Johnsen SJ, Clansen HB et.al (1993) Evidence for general instability of past climate from a 250 kyr ice-core record. Nature 364:218–220

    Google Scholar 

  • Dong GR, Li S, Li B et.al (1991) The preliminary research on the formation and evaluation of Chinese desert. Chinese Desert 4:26–31

    Google Scholar 

  • Duan J, Tan J, Cheng D, Bi X, Deng W, Sheng G, Fu J, Wong MH (2007) Sources and characteristics of carbonaceous aerosol in two largest cities in Pearl River Delta Region, China. Atmos Environ 41:2895–2903

    CAS  Google Scholar 

  • Duce RA, Liss PS, Merrill JT et.al (1991) The atmospheric input of trace species to the world ocean. Global Biogeochem Cycles 5(3):193–259

    Google Scholar 

  • Duce RA, Unni CK, Ray BJ, Zhang D (1980) Long-range atmospheric transport of soil dust from Asia to the tropical North Pacific: Temporal variability. Science 209:1522–1524

    CAS  Google Scholar 

  • Elmquist M, Cornelissen G, Kukulska Z, Gustafsson O (2006) Distinct oxidative stabilities of char versus soot black carbon: Implications for quantification and environmental recalcitrance. Global Biogeochem Cycles 20:GB2009. doi:2010.1029/2005GB002629

    Google Scholar 

  • Faegri K, Iversen J (1989) Textbook of pollen analysis, 4th edn. Wiley, Chichester

    Google Scholar 

  • Flannigan MD, Stocks BJ, Wotton BM (2000) Climate change and forest fires. Sci Total Environ 262:221–229

    CAS  Google Scholar 

  • Forster PV, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Dorland, R.V (2007) Changes in atmospheric constituents and in radiative forcing. Cambridge University Press, Cambridge

    Google Scholar 

  • Fry DL, Stephens SL (2006) Influence of humans and climate on the fire history of a ponderosa pine-mixed conifer forest in the southeastern Klamath Mountains, California. Forest Ecol Manag 223:428–438

    Google Scholar 

  • Gao Y, Arimoto R, Zhou MY et.al (1992) Relationships between the dust concentrations over eastern Asia and the remote North Pacific. J Geophy Res 97:9867–9872

    CAS  Google Scholar 

  • GESAMP (1989) GESAMP Working Group 14. In: GESAMP group of experts on scientific aspects of marine pollution. World Meteorological Organization, Geneva

    Google Scholar 

  • Goldberg ED (1985) Black carbon in the environment. Wiley, New York

    Google Scholar 

  • Gong SL, Zhang XY, Zhao TL, Barrie LA (2004) Sensitivity of Asian dust storm to natural and anthropogenic factors. Geophy Res Lett 31

    Google Scholar 

  • Gong SL, Zhang XY, Zhao TL, McKendry IG, Jaffe DA, Lu NM (2003) Characterization of soil dust aerosol in China and its transport/distribution during 2001 ACE-Asia. 2. Model simulation and validation. J Geophys Res:108. doi:10.1029/2002JD002633

    Google Scholar 

  • Gong SL, Zhang XY, Zhao TL, Mckendry IG, Jaffe DA, Lu NM (2003b) Characterization of soil dust aerosol in China and its transport/distribution during 2001 ACE-Asia, 2. Model simulation and validation. J Geophys Res 108:4262. doi:4210.1029/2002JD002633

    Google Scholar 

  • Graber ER, Rudich Y (2006) Atmospheric HULIS: How humic-like are they? A comprehensive and critical review. Atmos Chem Phys 6:729–753

    CAS  Google Scholar 

  • Hammes K, Schmidt MWI, Smernik RJ, Currie LA, Ball WP, Nguyen TH, Louchouarn P, Houel S, Gustafsson O, Elmquist M, Cornelissen G, Skjemstad JO, Masiello CA, Song J, Peng P, Mitra S, Dunn JC, Hatcher PG, Hockaday WC, Smith DM, Hartkopf-Froeder C, Boehmer A, Luer B, Huebert BJ, Amelung W, Brodowski S, Huang L, Zhang W, Gschwend PM, Flores-Cervantes DX, Largeau C, Rouzaud JN, Rumpel C, Guggenberger G, Kaiser K, Rodionov A, Gonzalez-Vila FJ, Gonzalez-Perez JA, de la Rosa JM, Manning DAC, Lopez-Capel E, Ding L (2007) Comparison of quantification methods to measure fire-derived (black/elemental) carbon in soils and sediments using reference materials from soil, water, sediment and the atmosphere. Global Biogeochem Cycles 21:GB3016. doi:3010.1029/2006GB002914

    Google Scholar 

  • Han YM, Cao JJ, Chow JC, Watson JG, An ZS, Jin ZD, Fung KC, Liu SX (2007a) Evaluation of the thermal/optical reflectance method for discrimination between char- and soot-EC. Chemosphere 69:569–574

    CAS  Google Scholar 

  • Han YM, Cao JJ, Chow JC, Watson JG, An ZS, Liu SX (2009a) Elemental carbon in urban soils and road dusts in Xi’an, China and its implication for air pollution. Atmos Environ 43:2464–2470

    CAS  Google Scholar 

  • Han YM, Cao JJ, Lee SC, Ho KF, An ZS (2010) Different characteristics of char and soot in the atmosphere and their ratio as an indicator for source identification in Xi’an. China Atmos Chem Phys 10:595–607

    CAS  Google Scholar 

  • Han YM, Cao JJ, Yan BZ, Kenna TC, Jin ZD, Cheng Y, An ZS (2011) Comparison of elemental carbon in lake sediments measured by TOR, TOT and CTO methods and 150-year pollution history in Eastern China. Environ Sci Technol 45:5287–5293

    CAS  Google Scholar 

  • Han YM, Han ZW, Cao JJ, Chow JC, Watson JG, An ZS, Liu SX, Zhang RJ (2008) Distribution and origin of carbonaceous aerosol over a rural high-mountain lake area, Northern China and its transport significance. Atmos Environ 42:2405–2414

    CAS  Google Scholar 

  • Han YM, Lee SC, Cao JJ, Ho KF, An ZS (2009b) Spatial distribution and seasonal variation of char-EC and soot-EC in the atmosphere over China. Atmos Environ 43:6066–6073

    CAS  Google Scholar 

  • Han YN, Cao JJ, An ZS, Chow JC, Watson JG, Jin Z, Fung K, Liu SX (2007b) Evaluation of the thermal/optical reflectance method for quantification of elemental carbon in sediments. Chemosphere 69:526–533

    CAS  Google Scholar 

  • Hansen ADA, Novakov T (1989) Aerosol black carbon measurements in the arctic haze during agasp-ii. J Atmos Chem 9:347–361

    CAS  Google Scholar 

  • Hansen J, Nazarenko L (2004) Soot climate forcing via snow and ice albedos. Proc Natl Acad Sci 101:423–428

    CAS  Google Scholar 

  • Hansen J, Sato M, Ruedy R, Nazarenko L, Lacis A, Schmidt GA, Russell G, Aleinov I, Bauer M, Bauer S, Bell N, Cairns B, Canuto V, Chandler M, Cheng Y, Del Genio A, Faluvegi G, Fleming E, Friend A, Hall T, Jackman C, Kelley M, Kiang N, Koch D, Lean J, Lerner J, Lo K, Menon S, Miller R, Minnis P, Novakov T, Oinas V, Perlwitz J, Perlwitz J, Rind D, Romanou A, Shindell D, Stone P, Sun S, Tausnev N, Thresher D, Wielicki B, Wong T, Yao M, Zhang S (2005) Efficacy of climate forcings. J Geophys Res:110

    Google Scholar 

  • He Z, Kim YJ, Ogunjobi KO, Kim JE, Ryu SY (2004) Carbonaceous aerosol characteristics of PM2.5 particles in northeastern Asia in summer 2002. Atmos Environ 38:1795–1800

    CAS  Google Scholar 

  • Hedges JI, Eglinton G, Hatcher PG, Kirchman DL, Arnosti C, Derenne S, Evershed RP, Kogel-Knabner I, de Leeuw JW, Littke R, Michaelis W, Rullkotter J (2000) The molecularly-uncharacterized component of nonliving organic matter in natural environments. Org Geochem 31:945–958

    CAS  Google Scholar 

  • Heinrich H (1988) Origin and consequences of cyclic ice rafting in the northeast Atlantic Ocean during the past 130 000 years. Quaternary Research 29, 142–152

    Google Scholar 

  • Ho KF, Lee SC, Cao JJ, Li YS, Chow JC, Watson JG, Fung K (2006) Variability of organic and elemental carbon, water soluble organic carbon, and isotopes in Hong Kong. Atmos Chem Phys 6:4569–4576

    CAS  Google Scholar 

  • Hou SS, Yang SL, Sun JM, Ding ZL (2003) Oxygen isotope compositions of quartz grains (4–16 μm) from Chinese eolian deposits and their implications for provenance. Sci China Ser D-Earth Sci 46:1003–1011

    Google Scholar 

  • Hovan SA, Rea DK, Pisias NG (1991) Late Pleistocene continental climate and oceanic variability recorded in northwest Pacific sediments. Paleoceanography 6:349–370

    Google Scholar 

  • Huerta MA, Whitlock C, Yale J (2009) Holocene vegetation-fire-climate linkages in northern Yellowstone National Park, USA. Palaeogeogr Palaeoclimat Palaeoecol 271:170–181

    Google Scholar 

  • Husar RB, Prospero JM, Stowe LL (1997) Characterizationi of tropospheric aerosols over the oceans with the NOAA advanced very high-resolution radiometer optical thickness operational product. J Geophys Res 102:16889–16909

    CAS  Google Scholar 

  • IPCC (2007) Couplings between changes in the climate system and biogeochemistry, fourth assessment report: climate chang 2007: The scientific basis. Cambridge University Press, New York, pp 555–556

    Google Scholar 

  • Ito A, Penner JE (2005) Historical emissions of carbonaceous aerosols from biomass and fossil fuel burning for the period 1870–2000. Global Biogeochem Cycles:19

    Google Scholar 

  • Iversen J (1941) Land occupation in Denmark’s Stone Age. Danmarks Geologiske Undersogelse II 66:1–68

    Google Scholar 

  • Iwasaka Y, Minoura H, Nagaya K (1983) The transport and spatial scale of Asian dust-storm clouds: a case study of the duststorm event of April 1979. Tellus 35B:189–196

    Google Scholar 

  • Jacobson MZ (2001a) Global direct radiative forcing due to multicomponent anthropogenic and natural aerosols. J Geophys Res 106:1551–1568

    CAS  Google Scholar 

  • Jacobson MZ (2001b) Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature 409:695–697

    CAS  Google Scholar 

  • Jones TP, Chaloner WG, Kuhlbusch TSJ (1997) Proposed bio-geological and chemical based terminology for fire-altered plant matter. Springer, Berlin

    Google Scholar 

  • Kim YP, Moon KC, Lee JH (2000) Organic and elemental carbon in fine particles at Kosan, Korea. Atmos Environ 34:3309–3317

    CAS  Google Scholar 

  • King MD, Kaufman YJ, Tanre D, Nakajima T (1999) Remote sensing of tropospheric aerosols from space: past, present, and future. Bull Am Meteorol Soc 80:2229–2259

    Google Scholar 

  • Kirchstetter TW, Novakov T, Hobbs PV (2004) Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon. J Geophys Res 109

    Google Scholar 

  • Kuhlbusch TAJ (1997) Black carbon in soils, sediments, and ice cores. Wiley, Toronto

    Google Scholar 

  • Lack DA, Cappa CD (2010) Impact of brown and clear carbon on light absorption enhancement, single scatter albedo and absorption wavelength dependence of black carbon. Atmos Chem Phys 10:4207–4220

    CAS  Google Scholar 

  • Lavanchy VMH, Gaggeler HW, Schotterer U, Schwikowski M, Baltensperger U (1999) Historical record of carbonaceous particle concentrations from a European high-alpine glacier (Colle Gnifetti, Switzerland). J Geophys Res 104:21227–21236

    CAS  Google Scholar 

  • Lewis K, Arnott WP, Moosmuller H, Wold CE (2008) Strong spectral variation of biomass smoke light absorption and single scattering albedo observed with a novel dual-wavelength photoacoustic instrument. J Geophys Res:113

    Google Scholar 

  • Liu TS (1985) Loess and the Environment. Ocean Press, Beijing

    Google Scholar 

  • Liu XD, Yin ZY, Zhang XY, Yang XC (2004) Analyses of the spring dust storm frequency of northern China in relation to antecedent and concurrent wind, precipitation, vegetation, and soil moisture conditions. J Geophys Res:109

    Google Scholar 

  • Lukacs H, Gelencser A, Hammer S, Puxbaum H, Pio C, Legrand M, Kasper-Giebl A, Handler M, Limbeck A, Simpson D, Preunkert S (2007) Seasonal trends and possible sources of brown carbon based on 2-year aerosol measurements at six sites in Europe. J Geophys Res:112

    Google Scholar 

  • Malm WC, Schichtel BA, Pitchford ML, Ashbaugh LL, Eldred RA, 2004. Spatial and monthly trends in speciated fine particle concentration in the United States. J Geophys Res:109

    Google Scholar 

  • Margolis EQ, Balmat J (2009) Fire history and fire-climate relationships along a fire regime gradient in the Santa Fe Municipal Watershed, NM, USA. Forest Ecol Manag 258:2416–2430

    Google Scholar 

  • Marlon JR, Bartlein PJ, Carcaillet C, Gavin DG, Harrison SP, Higuera PE, Joos F, Power MJ, Prentice IC (2008) Climate and human influences on global biomass burning over the past two millennia. Nat Geosci 1:697–702

    CAS  Google Scholar 

  • Marlon JR, Bartlein PJ, Walsh MK, Harrison SP, Brown KJ, Edwards ME, Higuera PE, Power MJ, Anderson RS, Briles C, Brunelle A, Carcaillet C, Daniels M, Hu FS, Lavoie M, Long C, Minckley T, Richard PJH, Scott AC, Shafer DS, Tinner W, Umbanhowar CE, Whitlock C (2009) Wildfire responses to abrupt climate change in North America. Proc Natl Acad Sci 106:2519–2524

    CAS  Google Scholar 

  • Marticorena B, Bergametti G (1995) Modeling the atmospheric dust cycle, 1. Design of an a soil-derived dust emission scheme. J Geophys Res 100:16415–16430

    Google Scholar 

  • Martin JM, Gordon RM (1988) Northeast Pacific iron distributions in relation to phytoplankton productivity. Deep-sea Res 35:177–196

    Google Scholar 

  • Masiello CA (2004) New directions in black carbon organic geochemistry. Mar Chem 92:201–213

    CAS  Google Scholar 

  • McConnell JR, Edwards R, Kok GL, Flanner MG, Zender CS, Saltzman ES, Banta JR, Pasteris DR, Carter MM, Kahl JDW (2007) 20th-century industrial black carbon emissions altered arctic climate forcing. Science 317:1381–1384

    CAS  Google Scholar 

  • Mei FM, Zhang XY, Lu HY, Shen ZX, Wang YQ (2004) Characterization of MASDs of surface soils in northern China and its influence on dust emission flux. Chin Sci Bull 49:2169–2179

    Google Scholar 

  • Meng ZY, Jiang XM, Yan P, Lin WL, Zhang HD, Wang Y (2007) Characteristics and sources of PM(2.5) and carbonaceous species during winter in Taiyuan, China. Atmos Environ 41:6901–6908

    CAS  Google Scholar 

  • Menon S, Koch D, Beig G, Sahu S, Fasullo J, Orlikowski D (2010) Black carbon aerosols and the third polar ice cap. Atmos Chem Phys 10:4559–4571

    CAS  Google Scholar 

  • Merrill JT, Arnold E, Leinen M, et.al (1994) Mineralogy of aeolian dust reaching the North Pacific Ocean: 2. Relationship of mineral assemblages to atmospheric transport patterns. J Geophys Res 99:21025–21032

    Google Scholar 

  • Merrill JT, Uematsu M, Bleck R (1989) Meteorological analysis of long range transport of mineral aerosol over the North Pacific. J Geophys Res 94:8584–8598

    Google Scholar 

  • Ming J, Cachier H, Xiao C, Qin D, Kang S, Hou S, Xu J (2008) Black carbon record based on a shallow Himalayan ice core and its climatic implications. Atmos Chem Phys 8:1343–1352

    CAS  Google Scholar 

  • Ming J, Xiao C, Sun J, Kang S, Bonasoni P (2011) Carbonaceous particles in the atmosphere and precipitation of the Nam Co region, central Tibet. J Environ Sci-China 22:1748–1756

    Google Scholar 

  • Morley JJ, Heusser LE (1997) Role of orbital forcing in east Asian monsoon climates during the last 350 kyr: Evidence from terrestrial and marine climate proxies from core RC14–99. Paleoceanography 12:483–493

    Google Scholar 

  • Moulin C, Lambert CE, Dayan U, Masson V, Ramonet M, Bousquet P, Legrand M, Balkanski YJ, Guelle W, Marticorena B, Bergametti G, Dulac F (1998) Satellite climatology of African dust transport in the Mediterranean atmosphere. J Geophys Res 103:13137–13144

    Google Scholar 

  • Nguyen TH, Brown RA, Ball WP (2004) An evaluation of thermal resistance as a measure of black carbon content in diesel soot, wood char, and sediment. Org Geochem 35:217–234

    CAS  Google Scholar 

  • Novakov T (1984) The role of soot and primary oxidants in atmospheric chemistry. Sci Total Environ 36:1–10

    CAS  Google Scholar 

  • Novakov T, Ramanathan V, Hansen JE, Kirchstetter TW, Sato M, Sinton JE, Sathaye JA (2003) Large historical changes of fossil-fuel black carbon aerosols. Geophys Res Lett:30

    Google Scholar 

  • Ogren JA, Charlson RJ (1983) Elemental carbon in the atmosphere—cycle and lifetime. Tellus B 35:241–254

    Google Scholar 

  • Olsson F, Gaillard M-J, Lemdahl G, Greisman A, Lanos P, Marguerie D, Marcoux N, Skoglund P, Wélind J (2010) A continuous record of fire covering the last 10,500 calendar years from southern Sweden—the role of climate and human activities. Palaeogeogr Palaeoclimat Palaeoecol 291:128–141

    Google Scholar 

  • Pérez C, Nickovic S, Pejanovic G, Baldasano JM, Özsoy E (2006) Interactive dust-radiation modeling: a step to improve weather forecasts. J Geophysical Research 111:17

    Google Scholar 

  • Parrington JR, Zoller WH, Aras NK (1983) Dust: seasonal transport to the Hawaiian Island. Science 220:195–197

    CAS  Google Scholar 

  • Patterson CC, Gillette DA (1977) Commonalities in measured size distributions for aerosols having a soil-derived component. J Geophy Res 82:2074–2082

    CAS  Google Scholar 

  • Peterson MR, Richards MH (2002) Thermal-optical-transmittance analysis for organic, elemental, carbonate, total carbon, and OCX2 in PM2.5 by the EPA/NIOSH method. In: Tropp RJ (ed) AWMA air quality measurement symposium. Air and Waste Management Association, Pittsburgh

    Google Scholar 

  • Petit JR (1999) Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399:429–436

    CAS  Google Scholar 

  • Porter SC, An ZS (1995) Correlation between climate events in the North Atlantic and China during the last glaciation. Nature 375:305–308

    CAS  Google Scholar 

  • Poschl U (2005) Atmospheric aerosols: Composition, transformation, climate and health effects. Angewandte Chemie-International Edition 44:7520–7540

    Google Scholar 

  • Power MJ, Marlon J, Ortiz N, Bartlein PJ, Harrison SP, Mayle FE, Ballouche A, Bradshaw RHW, Carcaillet C, Cordova C, Mooney S, Moreno PI, Prentice IC, Thonicke K, Tinner W, Whitlock C, Zhang Y, Zhao Y, Ali AA, Anderson RS, Beer R, Behling H, Briles C, Brown KJ, Brunelle A, Bush M, Camill P, Chu GQ, Clark J, Colombaroli D, Connor S, Daniau AL, Daniels M, Dodson J, Doughty E, Edwards ME, Finsinger W, Foster D, Frechette J, Gaillard MJ, Gavin DG, Gobet E, Haberle S, Hallett DJ, Higuera P, Hope G, Horn S, Inoue J, Kaltenrieder P, Kennedy L, Kong ZC, Larsen C, Long CJ, Lynch J, Lynch EA, McGlone M, Meeks S, Mensing S, Meyer G, Minckley T, Mohr J, Nelson DM, New J, Newnham R, Noti R, Oswald W, Pierce J, Richard PJH, Rowe C, Goni MFS, Shuman BN, Takahara H, Toney J, Turney C, Urrego-Sanchez DH, Umbanhowar C, Vandergoes M, Vanniere B, Vescovi E, Walsh M, Wang X, Williams N, Wilmshurst J, Zhang JH (2008) Changes in fire regimes since the Last Glacial Maximum: an assessment based on a global synthesis and analysis of charcoal data. Clim Dynam 30:887–907

    Google Scholar 

  • Prospero JM, Uematsu M, Savoie DL (1989) Mineral aerosol transport to the Pacific ocean. In: Riley JP, Chester R, Duce R A (eds) Chemical oceanography. Academic, San Diego, pp 188–218

    Google Scholar 

  • Pye K (1987) Aeolian dust and dust deposits. Academic Press, London

    Google Scholar 

  • Pye K (1995) The nature, origin, and accumulation of loess. Quat Sci Rev 14:653–667

    Google Scholar 

  • Pyne SJ, Goldammer JG (1997) The culture of fire: an introduction of anthropogenic fire history. Springer, Berlin

    Google Scholar 

  • Qu WJ, Zhang XY, Arimoto R, Wang D, Wang YQ, Yan LW, Li Y (2008) Chemical composition of the background aerosol at two sites in southwestern and northwestern China: potential influences of regional transport. Tellus B 60:657–673

    Google Scholar 

  • Ram K, Sarin MM, Hegde P (2008) Atmospheric abundances of primary and secondary carbonaceous species at two high-altitude sites in India: sources and temporal variability. Atmos Environ 42:6785–6796

    CAS  Google Scholar 

  • Ramanathan V, Carmichael G (2008) Global and regional climate changes due to black carbon. Nat Geosci 1:221–227

    CAS  Google Scholar 

  • Ramanathan V, Crutzen PJ, Kiehl JT, Rosenfeld D (2001) Atmosphere—Aerosols, climate, and the hydrological cycle. Science 294:2119–2124

    CAS  Google Scholar 

  • Raymo M (1997) Carbon cycle models: how strong are the constraints? In: Ruddiman WF (ed) Tectonic uplift and climate change. Plenum Press, New York, pp 367–381

    Google Scholar 

  • Rea DK (1994) The paleoclimatic record provided by eolian deposition in the deep sea: the geologic history of wind. Rev Geophys 32:159–195

    Google Scholar 

  • Reeve N, Toumi R (1999) Lightning activity as an indicator of climate change. Q. J. Roy. Meteor. Soc 125:893–903

    Google Scholar 

  • Rengarajan R, Sarin MM, Sudheer AK (2007) Carbonaceous and inorganic species in atmospheric aerosols during wintertime over urban and high-altitude sites in North India. J Geophys Res:112

    Google Scholar 

  • Ridgwell AJ (2002) Dust in the Earth system: the biogeochemical linking of land, air and sea. Phil Trans R Soc Lond A360:2905–2924

    Google Scholar 

  • Rind D, Peteet D, Broecker W, et.al (1986) The impact of cold North Atlantic sea-surface temperatures on climate: Implications for the Younger Dryas cooling (10–11k). Climate Dynamics 1:3–33

    Google Scholar 

  • Schmid H, Laskus L, Jurgen Abraham H, Baltensperger U, Lavanchy V, Bizjak M, Burba P, Cachier H, Crow D, Chow J, Gnauk T, Even A, ten Brink HM, Giesen K-P, Hitzenberger R, Hueglin C, Maenhaut W, Pio C, Carvalho A, Putaud J-P, Toom-Sauntry D, Puxbaum H (2001) Results of the “carbon conference” international aerosol carbon round robin test stage I. Atmos Environ 35:2111–2121

    CAS  Google Scholar 

  • Schmidt MWI, Noack AG (2000) Black carbon in soils and sediments: Analysis, distribution, implications, and current challenges. Global Biogeochem Cycles 14:777–793

    CAS  Google Scholar 

  • Schmidt MWI, Skjemstad JO, Czimczik CI, Glaser B, Prentice KM, Gelinas Y, Kuhlbusch TAJ (2001) Comparative analysis of black carbon in soils. Global Biogeochem Cycles 15:163–167

    CAS  Google Scholar 

  • Schnaiter M, Horvath H, Mohler O, Naumann KH, Saathoff H, Schock OW (2003) UV-VIS-NIR spectral optical properties of soot and soot-containing aerosols. J Aerosol Sci 34:1421–1444

    CAS  Google Scholar 

  • Seiler W, Crutzen PJ (1980) Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning. Climatic Change 2:207–247

    CAS  Google Scholar 

  • Shaw GE (1980) Transport of Asian desert aerosol to the Hawaiian Islands. Journal Application Meteorology 19:1254–1259

    Google Scholar 

  • Smith DM, Griffin JJ, Goldberg ED (1973) Elemental carbon in marine sediments—baseline for burning. Nature 241:268–270

    CAS  Google Scholar 

  • Sokolik IN, Toon OB (1996) Direct radiative forcing by anthropogenic airborne mineral aerosols. Nature 381:681–683

    CAS  Google Scholar 

  • Stegmann PM, Tindale NW (1999) Global distribution of aerosols over the open ocean as derived from the coastal zone color scanner. Global Biogeochem Cycles 13:383–397

    CAS  Google Scholar 

  • Streets DG, Bond TC, Carmichael GR, Fernandes SD, Fu Q, He D, Klimont Z, Nelson SM, Tsai NY, Wang MQ, Woo JH, Yarber KF (2003) An inventory of gaseous and primary aerosol emissions in Asia in the year 2000. J Geophys Res:108

    Google Scholar 

  • Suman DO, Kuhlbusch TAJ, Lim B (1997) Marine sediments: a reservoir for black carbon and their use as spatial and temporal records of combustion. In: JS Clark, Cachier H, Goldammer JG, Stocks B (eds) Sediment records of biomass burning and global change. Springer, Berlin

    Google Scholar 

  • Sun J, Zhang M, Liu T (2001) Spatial and temporal characteristics of dust storms in China and its surrounding regions, 1960–1999: Relations to source area and climate. J Geophys Res 106:10325–10333

    Google Scholar 

  • Taylor SR, McLennan SM (1995) The geochemical evolution of the continental crust. Rev Geophy 33:241–265

    Google Scholar 

  • Tegen I, Lacis AA, Fung I (1996) The influence of mineral aerosols from disturbed soils on the global radiation budget. Nature 380:419–422

    CAS  Google Scholar 

  • Tegen I, Werner M, Harrison SP, Kohfeld KE (2004) Relative importance of climate and land use in determining present and future global soil dust eimssion. Geophys Res Lett 31:555. doi:510.1029/2003GL019216

    Google Scholar 

  • Thevenon F, Bard E, Williamson D, Beaufort L (2004) A biomass burning record from the West Equatorial Pacific over the last 360 ky: methodological, climatic and anthropic implications. Palaeogeogr Palaeoclimat Palaeoecol 213:83–99

    Google Scholar 

  • Thevenon F, Williamson D, Bard E, Anselmetti FS, Beaufort L, Cachier H (2010) Combining charcoal and elemental black carbon analysis in sedimentary archives: Implications for past fire regimes, the pyrogenic carbon cycle, and the human-climate interactions. Global Planet Change 72:381–389

    Google Scholar 

  • Uematsu M, Duce RA, Prospero JM et.al (1983) Transport of mineral aerosol from Asia over the North Pacific Ocean. J Geophy Res 88:5343–5352

    Google Scholar 

  • van der Kaars S, Wang X, Kershaw P, Guichard F, Setiabudi DA (2000) A Late quaternary palaeoecological record from the Banda Sea, Indonesia: patterns of vegetation, climate and biomass burning in Indonesia and northern Australia. Palaeogeogr Palaeoclimat Palaeoecol 155:135–153

    Google Scholar 

  • Verardo DJ, Ruddiman WF (1996) Late pleistocene charcoal in tropical Atlantic deep-sea sediments: Climatic and geochemical significance. Geology 24:855–857

    CAS  Google Scholar 

  • Wang H, Zhang XY, Gong SL, Chen Y, Shi GY, Li W (2010) Radiative feedback of dust aerosols on the EastAsian dust storms. J Geophys Res 115:D23214. doi:23210.21029/22009JD013430

    Google Scholar 

  • Wang J (1995) Distributions of nature disaster in China. Chinese Science and Technology, Beijing

    Google Scholar 

  • Wang X, Peng PA, Ding ZL (2005) Black carbon records in Chinese Loess Plateau over the last two glacial cycles and implications for paleofires. Palaeogeogr Palaeoclimat Palaeoecol 223:9–19

    Google Scholar 

  • Wang X, van der Kaars S, Kershaw P, Bird M, Jansen F (1999) A record of fire, vegetation and climate through the last three glacial cycles from Lombok Ridge core G6–4, eastern Indian Ocean, Indonesia. Palaeogeogr Palaeoclimat Palaeoecol 147:241

    Google Scholar 

  • Watson JG, Chow JC, Chen L-WA (2005) Summary of organic and elemental carbon/black carbon analysis methods and intercomparisons. J Aero Air Qual Res 5:65–102

    CAS  Google Scholar 

  • Wolbach WS, Gilmour I, Anders E, Orth CJ, Brooks RR (1988) Global fire at the cretaceous tertiary boundary. Nature 334:665–669

    CAS  Google Scholar 

  • Xu BQ, Cao JJ, Hansen J, Yao TD, Joswia DR, Wang NL, Wu GJ, Wang M, Zhao HB, Yang W, Liu XQ, He JQ (2009) Black soot and the survival of Tibetan glaciers. Proc Natl Acad Sci 106:22114–22118

    CAS  Google Scholar 

  • Xuan J, Liu G, Du K (2000) Dust emission inventory in Northern China. Atmos Environ 34:4565–4570

    CAS  Google Scholar 

  • Xuan J, Sokolik IN (2002) Characterization of sources and emission rates of mineral dust in Northern China. Atmos Environ 36:4863–4876

    CAS  Google Scholar 

  • Yang H, Yu JZ, Ho SSH, Xu JH, Wu WS, Wan CH, Wang XD, Wang XR, Wang LS (2005) The chemical composition of inorganic and carbonaceous materials in PM(2.5) in Nanjing, China. Atmos Environ 39:3735–3749

    CAS  Google Scholar 

  • Zhang DE (1984) Synoptic-climatic studies of dust fall in China since the historic times. Scientia Sinica 27(8):825–836

    Google Scholar 

  • Zhang DE, Wang JH (1995) Preliminary studies on atmospheric circulation and synoptic-dynamic conditions for dustfall processes, m Loess. In: Liu TS (ed) Quaternary geology, global change (in Chinese). Science, Beijing, pp 151–157

    Google Scholar 

  • Zhang JC, Lin ZG (1992) Climate of China. Wiley, New York

    Google Scholar 

  • Zhang XY, Arimoto R, An Z, et.al (1993) Atmospheric trace elements over source regions for Chinese dust: Concentrations, sources and atmospheric deposition on the Loess Plateau. Atmos Environ 27A(13):2051–2067

    CAS  Google Scholar 

  • Zhang XY, Arimoto R, An Z, et.al (1994) Late quaternary recrods of the atmospheric input of eolian dust to the Center of the Chinese Loess Plateau. Quaternary Research 41:35–43

    CAS  Google Scholar 

  • Zhang XY, Arimoto R, An ZS (1997a) Dust emission from Chinese desert sources linked to variations in atmospheric circulation. J Geophy Res 102:28041–28047

    CAS  Google Scholar 

  • Zhang XY, Arimoto R, An ZS (1997b) Dust emission from Chinese desert sources linked to variations in atmospheric circulation. J Geophy Res 102:28041–28047

    CAS  Google Scholar 

  • Zhang XY, Arimoto R, An ZS (1999) Glacial and interglacial patterns for Asian dust transport. Quaternary Science Review 18:811–819

    Google Scholar 

  • Zhang XY, Arimoto R, Zhang D, et.al (1995) Atmospheric transport of wind-blown mineral particles in dust storm over northwestern China. Science Geology Sinica Sup Iss (1):135–151

    Google Scholar 

  • Zhang XY, Arimoto R, Zhu GH, Chen T, Zhang GY (1998) Concentration, size-distribution and deposition of mineral aerosol over Chinese desert regions. Tellus 50B:4317–4331

    Google Scholar 

  • Zhang XY, Gong SL, Shen ZX, Mei FM, Xi XX, Liu LC, Zhou ZJ, Wang D, Wang YQ, Cheng Y (2003a) Characterization of soil dust aerosol in China and its transport/distribution during 2001 ACE-Asia. 1. Network Observations. J. Geophys. Res:108. doi:10.1029/1004 2002JD002632

    Google Scholar 

  • Zhang XY, Gong SL, Zhao TL, Arimoto R, Wang YQ, Zhou ZJ, 2003b. Sources of Asian dust and role of climate change versus desertification in Asian dust emission. Geophysical Research Letters 30:2272 2210.1029/2003GL018206

    Google Scholar 

  • Zhang XY, Lu HY, Arimoto R, Gong SL (2002) Atmospheric dust loadings and their relationship to rapid oscillations of the Asian winter monsoon climate: two 250-kyr loess records. Earth Planet Sci Lett 202:637–643

    CAS  Google Scholar 

  • Zhang XY, Shen Z, Zhang G, Chen T, Liu H (1996a) Remote mineral aerosol in westerlies and their contributions to Chinese loess. Science in China (Series D) 39(1):67–76

    Google Scholar 

  • Zhang XY, Wang YQ, Niu T, Zhang XC, Gong SL, Zhang YM, Sun JY (2011) Atmospheric aerosols in China: spatial/temporal variability, chemical signature, regional haze distribution and comparisons with global aerosols. ACPD

    Google Scholar 

  • Zhang XY, Wang YQ, Zhang XC, Guo W, Gong SL (2008) Carbonaceous aerosol composition over various regions of China during 2006. J Geophys Res 113

    Google Scholar 

  • Zhang XY, Zhang GY, Zhu GH, Zhang DE, An ZS, Chen T, Huang XP (1996b) Elemental tracers for Chinese source dust. Science in China (Series D) 39(5):512–521

    Google Scholar 

  • Zhao TL, Gong SL, Zhang XY, McKendry G (2003) Characterization of soil dust aerosol in China and its transport/distribution during 2001 ACE-Asia. 3: Size-segregated wet and dry deposition budgets. J Geophys Res 108. 8665doi:8610.1029/2002JD003363

    Google Scholar 

  • Zhong DC (1999) The dynamic changes and trends of modern desert in China. Advance in Earth Sciences 14:229–234 (in Chinese)

    Google Scholar 

  • Zhou B, Shen C, Sun W, Zheng H, Yang Y, Sun Y, An Z (2007a) Elemental carbon record of paleofire history on the Chinese Loess Plateau during the last 420 ka and its response to environmental and climate changes. Palaeogeogr Palaeoclimat Palaeoecol 252:617–625

    Google Scholar 

  • Zhou B, Shen C, Sun W, Zheng H, Yang Y, Sun Y, An Z (2007b) Elemental carbon record of paleofire history on the Chinese Loess Plateau during the last 420ça and its response to environmental and climate changes. Palaeogeogr Palaeoclimatol Palaeoecol 252:617–625

    Google Scholar 

  • Zhou ZJ (2001) Blowing-sand and sandstorm in China in recent 45 years. Quaternary Research (Chinese)21:9–17 (in Chinese)

    Google Scholar 

  • Zhu JF, Zhu ZD (1999) Combating desertification in China. Chinese Forest, Beijing

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoye Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zhang, X., Han, Y., Sun, Y., Cao, J., An, Z. (2014). Asian Dust, Eolian Iron and Black Carbon—Connections to Climate Changes. In: An, Z. (eds) Late Cenozoic Climate Change in Asia. Developments in Paleoenvironmental Research, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7817-7_4

Download citation

Publish with us

Policies and ethics