Skip to main content

Multifunctional Wood-Adhesives for Structural Health Monitoring Purposes

  • Conference paper
Materials and Joints in Timber Structures

Part of the book series: RILEM Bookseries ((RILEM,volume 9))

Abstract

Structural Health Monitoring (SHM) is a concept, which uses integrated sensors to detect the condition of engineered structures. The sensors can be considered as the nervous system of the structure, which is designed to measure the various loads and damages to the structure during its lifetime. By analyzing the information about loads (wind, snow etc.) and damages (delamination, micro cracks etc.), the general health of the system can be monitored and a prediction of the lifetime becomes possible. While the development of SHM roots in applications of high safety demand (air space and power plant engineering), the decreasing costs of sensors and microelectronic devices supports its utilization in civil engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Majumder, M., Gangopadhyay, T.K., Chakraborty, A.K., Dasgupta, K., Bhattacharya, D.K.: Fibre bragg gratings in structural health monitoring - present status and applications. Sensors and Actuators A: Physical 147, 150–164 (2008)

    Article  Google Scholar 

  2. Ciang, C.C., Lee, J.-R., Bang, H.-J.: Structural health monitoring for a wind turbine system: a review of damage detection methods. Measurement Science and Technology 19, 1–20 (2008)

    Article  Google Scholar 

  3. Ou, J., Li, H.: Structural health monitoring in mainland china: Review and future trends. Structural Health Monitoring 9, 219–231 (2010)

    Article  Google Scholar 

  4. Kasal, B., Tannert, T.: In Situ Assessment of Structural Timber. Springer (2010)

    Google Scholar 

  5. Müller, A., Vogel, M.: Überwachung von Holztragwerken. Baublatt (September 2009)

    Google Scholar 

  6. Tannert, T., Müller, A.: Structural health monitoring of timber bridges. In: International Conference on Timber Bridges, ITCB 2010 (2010)

    Google Scholar 

  7. Annamdas, K.K.K., Annamdas, V.G.M.: Piezo impedance sensors to monitor degradation of biological structure. In: Advanced Environmental, Chemical, and Biological Sensing Technologies VII. SPIE (2010)

    Google Scholar 

  8. Annamdas, V.G.M., Annamdas, K.K.K.: Impedance based sensor technology to monitor stiffness of biological structures. In: Advanced Environmental, Chemical, and Biological Sensing Technologies VII. SPIE (2010)

    Google Scholar 

  9. Heiduschke, A., Trümper, W., Haller, P., Cherif, C.: Monitoring von Holzkonstruktionen mittels Carbonfaser-Sensoren. Bauingenieur 83, 468–472 (2008)

    Google Scholar 

  10. Blaß, H.J., Frese, M.: Schadensanalyse von Hallentragwerken aus Holz. Technical report, Karlsruher Institut für Technologie, KIT (2010)

    Google Scholar 

  11. Aicher, S.: Langzeitbeständigkeit und Sicherheit harnstoffharzverklebter tragender Holzbauteile. Technical report, MPA Stuttgart (2012)

    Google Scholar 

  12. Bierbaum, A.: Haptische Exploration von unbekannten Objekten mit einer humanoiden Roboterhand. PhD thesis, Karlsruher Institut für Technologie, KIT (2012)

    Google Scholar 

  13. Prasse, T.: Elektrisch leitfähige Funktions- und Strukturverbundstoffe auf der Basis von Kohlenstoff-Nanopartikeln und -fasern. PhD thesis, Technische Universität Hamburg-Harburg (2001)

    Google Scholar 

  14. Schüler, R., Joshi, S.P., Schulte, K.: Conductivity of CFRP as a tool for health and usage monitoring. In: SPIE 4th Annual Symposium on SMART Structures and Materials, San Diego (1997)

    Google Scholar 

  15. Chung, D.D.L.: Structural health monitoring by electrical resistance measurement. Smart Materials and Structures 10, 624–636 (2001)

    Article  Google Scholar 

  16. Thostenson, E.T., Chou, T.-W.: Real-time in situ sensing of damage evolution in advanced fiber composites using carbon nanotube networks. Nanotechnology 19, 215713 (2008)

    Article  Google Scholar 

  17. Gilg, R.G.: Ruß für leitfähige Kunststoffe. In: Elektrisch leitende Kunststoffe. Hanser Verlag (1989)

    Google Scholar 

  18. Balberg, I.: A comprehensive picture of the electrical phenomena in carbon black polymer composites. Carbon 40, 139–143 (2002)

    Article  Google Scholar 

  19. Davidson, T.: Conductive and magnetic fillers. In: Xanthos, M.: Functional Fillers for Plastics. Wiley-VCH (2010)

    Google Scholar 

  20. Schulte, K., Gojny, F.H., Wichmann, M.H.G., Sumfleth, J., Fiedler, B.: Polymere Nanoverbundwerkstoffe: Chancen, Risiken und potenzial zur Verbesserung der mechanischen und physikalischen Eigenschaften. Materialwissenschaft und Werkstofftechnik 37, 698–703 (2006)

    Article  Google Scholar 

  21. Wehnert, F., Heinrich, J., Jansen, I.: Multifunctional adhesives by integration of carbon nanotubes. In: EURADH 2012 - 9th European Adhesion Conference (2012)

    Google Scholar 

  22. Tjong, S.C.: Deformation mechanisms of functionalized carbon nanotube reinforced polymer nanocomposites. In: Karger-Kocsis, J., Fakirov, S. (eds.) Nano- and Micromechanics of Polymer Blends and Composites. Hanser Verlag (2009)

    Google Scholar 

  23. Kollmann, F.: Technologie des Holzes und der Holzwerkstoffe. Springer, Berlin (1982)

    Google Scholar 

  24. Mair, H., Roth, S.: Elektrisch leitende Kunststoffe. Hanser Verlag, München (1986)

    Google Scholar 

  25. Weißmantel, H., Gairola, A.: Die Verwendbarkeit von leitenden Kunststoffen für taktile Sensoren. Feinwerktechnik & Messtechnik 89, 79–84 (1981)

    Google Scholar 

  26. Steinfeld, K., Kalkner, W.: Einstellung und Stabilität der elektrischen Leitfähigkeit gefüllter Polymerwerkstoffe im Bereich der perkolationsschwelle. Technical report, TU Berlin, Berlin (1999)

    Google Scholar 

  27. Bokobza, L.: Rubber nanocomposites: New developments, new opportunities. In:Karger-Kocsis, J., Fakirov, S. (eds.) Nano- and Micromechanics of Polymer Blends and Composites. Hanser Verlag (2009)

    Google Scholar 

  28. Mullins, L.: Softening of rubber by deformation. Rubber Chemical Technology 42, 339–362 (1969)

    Article  Google Scholar 

  29. Wang, P., Ding, T.: Creep of electrical resistance under uniaxial pressures for carbon black-silicone rubber composites. Journal of Materials Science 45, 3595–3601 (2010)

    Article  Google Scholar 

  30. Lehmann, J.: Wasseraufnahme von PMMA und PC. KU Kunststoffe 7, 80–83 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Winkler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 RILEM

About this paper

Cite this paper

Winkler, C., Schwarz, U. (2014). Multifunctional Wood-Adhesives for Structural Health Monitoring Purposes. In: Aicher, S., Reinhardt, HW., Garrecht, H. (eds) Materials and Joints in Timber Structures. RILEM Bookseries, vol 9. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7811-5_35

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7811-5_35

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7810-8

  • Online ISBN: 978-94-007-7811-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics