Skip to main content

Plasmonics for Enhanced Vibrational Signatures

  • Chapter
  • First Online:

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 15))

Abstract

Vibrational signatures provide key information on the molecular composition of matter and on molecular structure and structural changes. Vibrational transitions in molecules can be probed optically by infrared absorption (IRA) and Raman scattering (RS). Exploiting local optical fields in the vicinity of plasmonic nanostructures has revolutionized optics and spectroscopy and opens up exciting new capabilities, particularly also for vibrational spectroscopy. The basic prerequisites for plasmon-supported spectroscopy are strongly enhanced and highly confined local optical fields in the wavelength range applied in the respective spectroscopic method. Here, we review plasmon supported linear and non-linear vibrational spectroscopies. Our discussion includes incoherent effects such as surface enhanced Raman scattering (SERS), surface enhanced pumped anti-Stokes Raman scattering (SEPARS), surface enhanced hyper Raman scattering (SEHRS), and surface enhanced infrared absorption (SEIRA), as well as coherent Raman techniques such as surface enhanced coherent anti-Stokes Raman scattering (SECARS) and surface enhanced stimulated Raman scattering (SESRS). Emphasis will be placed on materials and nanostructures that efficiently support various vibrational spectroscopic methods. Selected applications of surface enhanced vibrational spectroscopy for chemical probing and sensing will be discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. B. Schrader, Infrared and Raman Spectroscopy: Methods and Applications (Wiley, Chichester, 1995)

    Book  Google Scholar 

  2. D. Mitleman, Sensing with Terahertz Radiation (Springer, Berlin, 2003)

    Book  Google Scholar 

  3. K. Kneipp, H. Kneipp, I. Itzkan, R.R. Dasari, M.S. Feld, Ultrasensitive chemical analysis by Raman spectroscopy. Chem. Rev. 99, 2957–2975 (1999)

    Article  CAS  Google Scholar 

  4. K. Kneipp, Surface-enhanced Raman scattering. Phys. Today 60, 40–46 (2007)

    Article  CAS  Google Scholar 

  5. P.L. Stiles, J.A. Dieringer, N.C. Shah, R.R. Van Duyne, Surface-enhanced Raman spectroscopy. Annu. Rev. Anal. Chem. 1, 601–626 (2008)

    Article  CAS  Google Scholar 

  6. J. Kneipp, H. Kneipp, K. Kneipp, SERS–a single-molecule and nanoscale tool for bioanalytics. Chem. Soc. Rev. 37, 1052–1060 (2008)

    Article  CAS  Google Scholar 

  7. R. Adato, A.A. Yanik, J.J. Amsden, D.L. Kaplan, F.G. Omenetto, M.K. Hong, S. Erramilli, H. Altug, Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays. Proc. Nat. Acad. Sci. U.S.A. 106, 19227–19232 (2009)

    Article  CAS  Google Scholar 

  8. V.N. Denisov, B.N. Mavrin, V.B. Podobedov, Hyper Raman scattering. Phys. Rep. 151, 1 (1987)

    Article  Google Scholar 

  9. A.M. Kelley, Hyper-Raman scattering by molecular vibrations, in Annual Review of Physical Chemistry, vol. 61 (Annual Reviews, Palo Alto, 2010), pp. 41–61

    Google Scholar 

  10. J.X. Cheng, X.S. Xie, Coherent anti-Stokes Raman scattering microscopy: instrumentation, theory, and applications. J. Phys. Chem. B 108, 827–840 (2004)

    Article  CAS  Google Scholar 

  11. C.W. Freudiger, W. Min, G.R. Holtom, B.W. Xu, M. Dantus, X.S. Xie, Highly specific label-free molecular imaging with spectrally tailored excitation-stimulated Raman scattering (STE-SRS) microscopy. Nat. Photonics 5, 103–109 (2011)

    Article  CAS  Google Scholar 

  12. C.L. Evans, X.S. Xie, Coherent anti-stokes Raman scattering microscopy: chemical imaging for biology and medicine. Annu. Rev. Anal. Chem. 1, 883–909 (2008)

    Article  CAS  Google Scholar 

  13. L. Dhar, J.A. Rogers, K.A. Nelson, Time-resolved vibrational spectroscopyin the impulsive limit. Chem. Rev. 94, 157–193 (1994)

    Article  CAS  Google Scholar 

  14. S. Umapathy, A. Lakshmanna, B. Mallick, Ultrafast Raman loss spectroscopy. J. Raman Spectrosc. 40, 235–237 (2009)

    Article  CAS  Google Scholar 

  15. A. Weigel, N.P. Ernsting, Excited Stilbene: intramolecular vibrational redistribution and solvation studied by femtosecond stimulated Raman spectroscopy. J. Phys. Chem. B 114, 7879–7893 (2010)

    Article  CAS  Google Scholar 

  16. R.R. Frontiera, R.A. Mathies, Femtosecond stimulated Raman spectroscopy. Laser Photonics Rev. 5, 102–113 (2011)

    Article  CAS  Google Scholar 

  17. M. Moskovits, Surface-enhanced Raman spectroscopy: a brief perspective, in Surface-Enhanced Raman Scattering: Physics and Applications (Springer-Verlag Berlin, Berlin, 2006), pp. 1–17

    Book  Google Scholar 

  18. P. Johansson, H.X. Xu, M. Kall, Surface-enhanced Raman scattering and fluorescence near metal nanoparticles. Phys. Rev. B 72, 035427 (2005)

    Article  Google Scholar 

  19. M.I. Stockman, Nanoplasmonics: past, present, and glimpse into future. Opt. Express 19, 22029–22106 (2011)

    Article  Google Scholar 

  20. L. Novotny, N. van Hulst, Antennas for light. Nat. Photonics 5, 83–90 (2011)

    Article  CAS  Google Scholar 

  21. A. Ahmed, R. Gordon, Single molecule directivity enhanced Raman scattering using nanoantennas. Nano Lett. 12, 2625–2630 (2012)

    Article  CAS  Google Scholar 

  22. K. Kneipp, M. Moskovits, H. Kneipp, in Surface-Enhanced Raman Scattering- Physics and Applications (Springer, Berlin, 2006)

    Book  Google Scholar 

  23. A. Otto, Surface- enhanced Raman scattering: ‘classical’ and ‘chemical’ origins, in Light Scattering in Solids IV. Electronic Scattering, Spin Effects, SERS and Morphic Effects, ed. by M. Cardona, G. Guntherodt (Springer, Berlin, 1984), pp. 289–418

    Chapter  Google Scholar 

  24. A. Campion, P. Kambhampati, Surface-enhanced Raman scattering. Chem. Soc. Rev. 27, 241–250 (1998)

    Article  CAS  Google Scholar 

  25. J.R. Lombardi, R.L. Birke, Time-dependent picture of the charge-transfer contributions to surface enhanced Raman spectroscopy. J. Chem. Phys. 126, 244709 (2007)

    Article  Google Scholar 

  26. M.I. Stockman, Electromagnetic theory of SERS, in Surface-Enhanced Raman Scattering: Physics and Applications (Springer, Berlin, 2006), pp. 47–65

    Book  Google Scholar 

  27. G.C. Schatz, M.A. Young, R.P. Van Duyne, Electromagnetic mechanism of SERS, in Surface-Enhanced Raman Scattering: Physics and Applications (Springer, Berlin, 2006), pp. 19–45

    Book  Google Scholar 

  28. R.F. Aroca, D.J. Ross, C. Domingo, Surface-enhanced infrared spectroscopy. Appl. Spectrosc. 58, 324A–338A (2004)

    Article  CAS  Google Scholar 

  29. F. Neubrech, A. Pucci, T.W. Cornelius, S. Karim, A. Garcia-Etxarri, J. Aizpurua, Resonant plasmonic and vibrational coupling in a Tailored nanoantenna for infrared detection. Phys. Rev. Lett. 101, 4 (2008)

    Article  Google Scholar 

  30. A. Pucci, F. Neubrech, D. Weber, S. Hong, T. Toury, M.L. de la Chapelle, Surface enhanced infrared spectroscopy using gold nanoantennas. Phys. Status Solidi B Basic Solid State Phys. 247, 2071–2074 (2010)

    Article  CAS  Google Scholar 

  31. F. Le, D.W. Brandl, Y.A. Urzhumov, H. Wang, J. Kundu, N.J. Halas, J. Aizpurua, P. Nordlander, Metallic nanoparticle arrays: a common substrate for both surface-enhanced Raman scattering and surface-enhanced infrared absorption. ACS Nano 2, 707–718 (2008)

    Article  CAS  Google Scholar 

  32. V. Liberman, R. Adato, T.H. Jeys, B.G. Saar, S. Erramilli, H. Altug, Rational design and optimization of plasmonic nanoarrays for surface enhanced infrared spectroscopy. Opt. Express 20, 11953–11966 (2012)

    Article  CAS  Google Scholar 

  33. R. Hillenbrand, T. Taubner, F. Keilmann, Phonon-enhanced light-matter interaction at the nanometre scale. Nature 418, 159–162 (2002)

    Article  CAS  Google Scholar 

  34. M.S. Anderson, Enhanced infrared absorption with dielectric nanoparticles. Appl. Phys. Lett. 83, 2964–2966 (2003)

    Article  CAS  Google Scholar 

  35. J. Kneipp, H. Kneipp, K. Kneipp, Two-photon vibrational spectroscopy for biosciences based on surface-enhanced hyper-Raman scattering. Proc. Nat. Acad. Sci. U.S.A. 103, 17149–17153 (2006)

    Article  CAS  Google Scholar 

  36. H. Kneipp, K. Kneipp, F. Seifert, Surface-enhanced hyper-Raman scattering (SEHRS) and surface-enhanced Raman scattering (SERS) by means of mode-locked Ti:sapphire laser excitation. Chem. Phys. Lett. 212, 374–378 (1993)

    Article  CAS  Google Scholar 

  37. T. Itoh, Y. Ozaki, H. Yoshikawa, T. Ihama, H. Masuhara, Hyper-Rayleigh scattering and hyper-Raman scattering of dye-adsorbed silver nanoparticles induced by a focused continuous-wave near-infrared laser. Appl. Phys. Lett. 88, 084102 (2006)

    Article  Google Scholar 

  38. L. Weinan, A. Meyers-Kelley, SEHRS spectra on Ag films at pulse energies below 2 pJ. J. Am. Chem. Soc. 128, 3492–3493 (2006)

    Article  Google Scholar 

  39. K. Kneipp, Y. Wang, H. Kneipp, I. Itzkan, R.R. Dasari, M.S. Feld, Population pumping of ecited vibrational states by spontaneous surface-enhanced Raman scattering. Phys. Rev. Lett. 76, 2444 (1996)

    Article  CAS  Google Scholar 

  40. K. Kneipp, H. Kneipp, P. Corio, S.D.M. Brown, K. Shafer, J. Motz, L.T. Perelman, E.B. Hanlon, A. Marucci, G. Dresselhaus, M.S. Dresselhaus, Surface-enhanced and normal Stokes and anti-Stokes Raman spectroscopy of single-walled carbon nanotubes. Phys. Rev. Lett. 84, 3470–3473 (2000)

    Article  CAS  Google Scholar 

  41. K. Kneipp, H. Kneipp, R. Manoharan, I. Itzkan, R.R. Dasari, M.S. Feld, Surface-enhanced Raman scattering (SERS)—a new tool for single molecule detection and identification. Bioimaging 6, 104–110 (1998)

    Article  CAS  Google Scholar 

  42. K. Kneipp, H. Kneipp, I. Itzkan, R.R. Dasari, M.S. Feld, M.S. Dresselhaus, Nonlinear Raman Probe of Single Molecules Attached to Colloidal Silver and Gold Clusters, in Optical Properties of Nanostructured Random Media (Springer, Berlin, 2002)

    Google Scholar 

  43. W. Kiefer, D.A. Long, Non-Linear Raman Spectroscopy and its Chemical Application (Reider, Dordrecht, 1982)

    Book  Google Scholar 

  44. A. Volkmer, J.X. Cheng, X.S. Xie, Vibrational imaging with high sensitivity via epidetected coherent anti-Stokes Raman scattering microscopy. Phys. Rev. Lett. 87, 3901 (2001)

    Article  Google Scholar 

  45. E. Liang, A. Weippert, J. Funk, A. Materny, W. Kiefer, Experimental observation of surface-enhanced coherent anti-Stokes Raman scattering. Chem. Phys. Lett. 227, 115–120 (1994)

    Article  CAS  Google Scholar 

  46. I. Baltog, M. Baibarac, S. Lefrant, Coherent anti-Stokes Raman scattering on single-walled carbon nanotubes and copper phthalocyanine thin films excited through surface plasmons. J. Opt. Pure Appl. Opt. 7, 632–639 (2005)

    Article  Google Scholar 

  47. I. Baltog, M. Baibarac, S. Lefrant, "Single-beam pumped" coherent anti-Stokes Raman scattering on carbon nanotubes thin films excited through surface plasmons. Physica E Low Dimensional Syst. Nanostruct. 40, 2380–2385 (2008)

    Article  CAS  Google Scholar 

  48. C.J. Addison, S.O. Konorov, A.G. Brolo, M.W. Blades, R.F.B. Turner, Tuning gold nanoparticle self-assembly for optimum coherent anti-stokes Raman scattering and second harmonic generation response. J. Phys. Chem. C 113, 3586–3592 (2009)

    Article  CAS  Google Scholar 

  49. C. Steuwe, C.F. Kaminski, J.J. Baumberg, S. Mahajan, Surface enhanced coherent anti-stokes Raman scattering on nanostructured gold surfaces. Nano Lett. 11, 5339–5343 (2011)

    Article  CAS  Google Scholar 

  50. S. Schlucker, M. Salehi, G. Bergner, M. Schutz, P. Strobel, A. Marx, I. Petersen, B. Dietzek, J. Popp, Immuno-surface-enhanced coherent anti-stokes Raman scattering microscopy: immunohistochemistry with target-specific metallic nanoprobes and nonlinear Raman microscopy. Anal. Chem. 83, 7081–7085 (2011)

    Article  CAS  Google Scholar 

  51. R.R. Frontiera, A.I. Henry, N.L. Gruenke, R.P. Van Duyne, Surface-enhanced femtosecond stimulated Raman spectroscopy. J. Phys. Chem. Lett. 2, 1199–1203 (2011)

    Article  CAS  Google Scholar 

  52. Y. Sonnefraud, A.L. Koh, D.W. McComb, S.A. Maier, Nanoplasmonics: engineering and observation of localized plasmon modes. Laser Photonics Rev. 6, 277–295 (2012)

    Article  Google Scholar 

  53. M.I. Stockman, Nanoplasmonics: the physics behind the applications. Phys. Today 64, 39–44 (2011)

    Article  Google Scholar 

  54. L. Novotny, From near-field optics to optical antennas. Phys. Today 64, 47–52 (2011)

    Article  Google Scholar 

  55. S. Lal, N.K. Grady, J. Kundu, C.S. Levin, J.B. Lassiter, N.J. Halas, Tailoring plasmonic substrates for surface enhanced spectroscopies. Chem. Soc. Rev. 37, 898–911 (2008)

    Article  CAS  Google Scholar 

  56. P.R. West, S. Ishii, G.V. Naik, N.K. Emani, V.M. Shalaev, A. Boltasseva, Searching for better plasmonic materials. Laser Photonics Rev. 4, 795–808 (2010)

    Article  CAS  Google Scholar 

  57. K. Kneipp, W. Yang, H. Kneipp, L.T. Perelman, I. Itzkan, R.R. Dasari, M.S. Feld, Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78, 1667–70 (1997)

    Article  CAS  Google Scholar 

  58. K. Kneipp, H. Kneipp, J. Kneipp, Surface-enhanced Raman scattering in local optical fields of silver and gold nanoaggregatess–from single-molecule Raman spectroscopy to ultrasensitive probing in live cells. Acc. Chem. Res. 39, 443–450 (2006)

    Article  CAS  Google Scholar 

  59. K. Kneipp, H. Kneipp, R. Manoharan, E.B. Hanlon, I. Itzkan, R.R. Dasari, M.S. Feld, Extremely large enhancement factors in surface-enhanced Raman scattering for molecules on colloidal gold clusters. Appl. Spectrosc. 52, 1493–1497 (1998)

    Article  CAS  Google Scholar 

  60. K. Kneipp, H. Kneipp, V.B. Kartha, R. Manoharan, G. Deinum, I. Itzkan, R.R. Dasari, M.S. Feld, Detection and identification of a single DNA base molecule using surface–enhanced Raman scattering ( SERS ). Phys. Rev. E 57, R6281–R6284 (1998)

    Article  CAS  Google Scholar 

  61. M.I. Stockman, V.M. Shalaev, M. Moskovits, R. Botet, T.F. George, Enhanced Raman scattering by fractal clusters: scale-invariant theory. Phys. Rev. B 46, 2821–2830 (1992)

    Article  Google Scholar 

  62. V.A. Podolskiy, V.M. Shalaev, Giant optical responses in microcavity-fractal composites. Laser Phys. 11, 26–30 (2001)

    CAS  Google Scholar 

  63. K.R. Li, M.I. Stockman, D.J. Bergman, Self-similar chain of metal nanospheres as an efficient nanolens. Phys. Rev. Lett. 91, 227–402 (2003)

    Google Scholar 

  64. J. Kneipp, X.T. Li, M. Sherwood, U. Panne, H. Kneipp, M.I. Stockman, K. Kneipp, Gold nanolenses generated by laser ablation-efficient enhancing structure for surface enhanced Raman scattering analytics and sensing. Anal. Chem. 80, 4247–4251 (2008)

    Article  CAS  Google Scholar 

  65. C. Hoppener, L. Novotny, Exploiting the light-metal interaction for biomolecular sensing and imaging. Q. Rev. Biophys. 45, 209–255 (2012)

    Article  Google Scholar 

  66. N.J. Halas, S. Lal, W.S. Chang, S. Link, P. Nordlander, Plasmons in strongly coupled metallic nanostructures. Chem. Rev. 111, 3913–3961 (2011)

    Article  CAS  Google Scholar 

  67. J. Kundu, F. Le, P. Nordlander, N.J. Halas, Surface enhanced infrared absorption (SEIRA) spectroscopy on nanoshell aggregate substrates. Chem. Phys. Lett. 452, 115–119 (2008)

    Article  CAS  Google Scholar 

  68. V. Jayaraman, K.R. Rodgers, I. Mukeriji, T.G. Spiro, Hemoglobin allostery—resonance Raman spectroscopy of kinetic intermediates. Science 269, 1843–1848 (1995)

    Article  CAS  Google Scholar 

  69. K.R. Rodgers, T.G. Spiro, Nanosecond dynamics of the R–>T transition in hemoglobin-ultreviolet raman studies. Science 265, 1697–1699 (1994)

    Google Scholar 

  70. E.J. Zeman, G.C. Schatz, An acurate electromagnetic theory study of surface enhancement factors for AG, AU, CU, LI, NA, AL, GA, IN, ZN and CD. J. Phy. Chem. 91, 634–643 (1987)

    Article  CAS  Google Scholar 

  71. G.H. Chan, J. Zhao, G.C. Schatz, R.P. Van Duyne, Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles. J. Phys. Chem. C 112, 13958–13963 (2008)

    Article  CAS  Google Scholar 

  72. Z.L. Yang, Q.H. Li, B. Ren, Z.Q. Tian, Tunable SERS from aluminium nanohole arrays in the ultraviolet region. Chem. Commun. 47, 3909–3911 (2011)

    Article  CAS  Google Scholar 

  73. T. Dorfer, M. Schmitt, J. Popp, Deep-UV surface-enhanced Raman scattering. J. Raman Spectrosc. 38, 1379–1382 (2007)

    Article  Google Scholar 

  74. B. Ren, X.F. Lin, Z.L. Yang, G.K. Liu, R.F. Aroca, B.W. Mao, Z.Q. Tian, Surface-enhanced Raman scattering in the ultraviolet spectral region: UV-SERS on rhodium and ruthenium electrodes. J. Am. Chem. Soc. 125, 9598–9599 (2003)

    Article  CAS  Google Scholar 

  75. K. Kneipp, H. Kneipp, Two-Photon Excited Surface-Enhanced Raman Scattering, Surface-Enhanced Raman Scattering: Physics and Applications (Springer, Berlin, 2006)

    Book  Google Scholar 

  76. K. Kneipp, H. Kneipp, SERS signals at the anti Stokes side of the excitation laser in extremely high local optical fields of silver and gold nanoclusters. Faraday Discuss. 132, 27–33 (2006)

    Article  CAS  Google Scholar 

  77. H. Harutyunyan, G. Volpe, R. Quidant, L. Novotny, Enhancing the nonlinear optical response using multifrequency gold-nanowire antennas. Phys. Rev. Lett. 108, 4 (2012)

    Article  Google Scholar 

  78. K.N. Heck, B.G. Janesko, G.E. Scuseria, N.J. Halas, M.S. Wong, Observing metal-catalyzed chemical reactions in situ using surface-enhanced Raman spectroscopy on Pd-Au nanoshells. J. Am. Chem. Soc. 130, 16592–16600 (2008)

    Article  CAS  Google Scholar 

  79. W. Xie, C. Herrmann, K. Kompe, M. Haase, S. Schlucker, Synthesis of bifunctional Au/Pt/Au Core/Shell nanoraspberries for in situ SERS monitoring of platinum-catalyzed reactions. J. Am. Chem. Soc. 133, 19302–19305 (2011)

    Article  CAS  Google Scholar 

  80. V. Joseph, C. Engelbrekt, J. Zhang, U. Gernert, J. Ulstrup, J. Kneipp, Characterizing the kinetics of nanoparticle-catalyzed reactions by surface-enhanced Raman scattering. Angew. Chem. Int. Ed. 51, 7592–7596 (2012)

    Article  CAS  Google Scholar 

  81. Y.W.C. Cao, R.C. Jin, C.A. Mirkin, Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297, 1536–1540 (2002)

    Article  CAS  Google Scholar 

  82. Y.C. Cao, R.C. Jin, J.M. Nam, C.S. Thaxton, C.A. Mirkin, Raman dye-labeled nanoparticle probes for proteins. J. Am. Chem. Soc. 125, 14676–14677 (2003)

    Article  CAS  Google Scholar 

  83. X.M. Qian, X.H. Peng, D.O. Ansari, Q. Yin-Goen, G.Z. Chen, D.M. Shin, L. Yang, A.N. Young, M.D. Wang, S.M. Nie, In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat. Biotechnol. 26, 83–90 (2008)

    Article  CAS  Google Scholar 

  84. J. Kneipp, H. Kneipp, A. Rajadurai, R.W. Redmond, K. Kneipp, Optical probing and imaging of live cells using SERS labels. J. Raman Spectrosc. 40, 1–5 (2009)

    Article  CAS  Google Scholar 

  85. J. Kneipp, H. Kneipp, B. Wittig, K. Kneipp, Novel optical nanosensors for probing and imaging live cells. Nanomed. Nanotechnol. Bio. Med. 6, 214–226 (2010)

    Article  CAS  Google Scholar 

  86. J. Kneipp, Nanosensors Based on SERS for Applications in Living Cells, Surface-Enhanced Raman Scattering: Physics and Applications (Springer, Berlin, 2006)

    Book  Google Scholar 

  87. J. Kneipp, H. Kneipp, B. Wittig, K. Kneipp, One and two photon excited optical pH probing for cells using surface enhanced Raman and hyper Raman nanosensors. Nano Lett. 103, 17149–17153 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katrin Kneipp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kneipp, K., Kneipp, H., Kneipp, J. (2013). Plasmonics for Enhanced Vibrational Signatures. In: Shahbazyan, T., Stockman, M. (eds) Plasmonics: Theory and Applications. Challenges and Advances in Computational Chemistry and Physics, vol 15. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7805-4_2

Download citation

Publish with us

Policies and ethics