Skip to main content

Plasmonic Functionalities Based on Detuned Electrical Dipoles

  • Chapter
  • First Online:
Plasmonics: Theory and Applications

Abstract

We introduce and demonstrate the concept of detuned electrical dipoles (DED) that originates from the plasmonic realization of the dressed-state picture of electromagnetically induced transparency in atomic physics. Numerically and experimentally analyzing DED metamaterials consisting of unit cells with two and three differently sized gold nanorods, we show the possibility of optical transparency characterized by enhanced transmission, reduced group velocity and propagation loss. The concept of DED is further applied to plasmonic sensing of the environment, demonstrating unprecedented sensitivity to refractive index changes by the utilization of scattering asymmetry. By the similar concept, DED metamaterials are designed to function as nanometer-thin wave plates in reflection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Zhang, D.A. Genov, Y. Wang, M. Liu, X. Zhang, Phys. Rev. Lett. 101, 047401 (2008)

    Article  Google Scholar 

  2. N. Papasimakis, V.A. Fedotov, N.I. Zheludev, S.L. Prosvirnin, Phys. Rev. Lett. 101, 253903 (2008)

    Article  CAS  Google Scholar 

  3. P. Tassin, L. Zhang, T. Koschny, E.N. Economou, C.M. Soukoulis, Phys. Rev. Lett. 102, 053901 (2009)

    Article  CAS  Google Scholar 

  4. P. Tassin, L. Zhang, T. Koschny, E.N. Economou, C.M. Soukoulis, Opt. Express 17, 5595 (2009)

    Article  CAS  Google Scholar 

  5. N. Liu, L. Langguth, T. Weiss, J. Kästel, M. Fleischhauer, T. Pfau, H. Giessen, Nat. Mater. 8, 758 (2009)

    Article  CAS  Google Scholar 

  6. R. Taubert, M. Hentschel, J. Kästel, H. Giessen, Nano Lett. 12, 1367 (2012)

    Article  CAS  Google Scholar 

  7. K.J. Boller, A. Imamolu, S.E. Harris, Phys. Rev. Lett. 66, 2593 (1991)

    Article  CAS  Google Scholar 

  8. M. Fleischhauer, A. Imamoglu, J.P. Marangos, Rev. Mod. Phys. 77, 633 (2005)

    Article  CAS  Google Scholar 

  9. T.F. Krauss, Nat. Photonics 2, 448 (2008)

    Article  CAS  Google Scholar 

  10. N. Papasimakis, Y.H. Fu, V.A. Fedotov, S.L. Prosvirnin, D.P. Tsai, N.I. Zheludev, Appl. Phys. Lett. 94, 211902 (2009)

    Article  Google Scholar 

  11. S. Maier, Nat. Mater. 8, 699 (2009)

    Article  CAS  Google Scholar 

  12. R.D. Kekatpure, E.S. Barnard, W. Cai, M.L. Brongersma, Phys. Rev. Lett. 104, 243902 (2010)

    Article  Google Scholar 

  13. S.I. Bozhevolnyi, A.B. Evlyukhin, A. Pors, M.G. Nielsen, M. Willatzen, O. Albrektsen, New J. Phys. 13, 023034 (2011)

    Article  Google Scholar 

  14. A.B. Evlyukhin, S.I. Bozhevolnyi, A. Pors, M.G. Nielsen, I.P. Radko, M. Willatzen, O. Albrektsen, Nano Lett. 10, 4571 (2010)

    Article  CAS  Google Scholar 

  15. A. Pors, M.G. Nielsen, G.D. Valle, M. Willatzen, O. Albrektsen, S.I. Bozhevolnyi, Opt. Lett. 36, 1626 (2011)

    Article  Google Scholar 

  16. E. Prodan, C. Radloff, N.J. Halas, P. Nordlander, Science 302, 419 (2003)

    Article  CAS  Google Scholar 

  17. C. Sönnichsen, T. Franzl, T. Wilk, G. von Plessen, J. Feldmann, O. Wilson, P. Mulvaney, Phys. Rev. Lett. 88, 077402 (2002)

    Article  Google Scholar 

  18. L. Jylhä, I. Kolmakov, S. Maslovski, S. Tretyakov, J. Appl. Phys. 99, 043102 (2006)

    Article  Google Scholar 

  19. F. Wang, Y.R. Shen, Phys. Rev. Lett. 97, 206806 (2006)

    Article  Google Scholar 

  20. G.D. Valle, T. Søndergaard, S.I. Bozhevolnyi, Phys. Rev. B 80, 235405 (2009)

    Article  Google Scholar 

  21. A. Pors, M. Willatzen, O. Albrektsen, S.I. Bozhevolnyi, J. Opt. Soc. Am. B 27, 1680 (2010)

    Article  CAS  Google Scholar 

  22. A. Yariv, Quantum Electronics, 3rd edn. (Wiley, New York, 1989)

    Google Scholar 

  23. J.D. Jackson, Classical Electrodynamics, 3rd edn. (Wiley, New York, 1999)

    Google Scholar 

  24. A. Pors, M. Willatzen, O. Albrektsen, S.I. Bozhevolnyi, Phys. Rev. B 83, 245409 (2011)

    Article  Google Scholar 

  25. P.B. Johnson, R.W. Christy, Phys. Rev. B 6, 4370 (1972)

    Article  CAS  Google Scholar 

  26. L. Novotny, Phys. Rev. Lett. 98, 266802 (2007)

    Article  Google Scholar 

  27. G.D. Valle, T. Søndergaard, S.I. Bozhevolnyi, Opt. Express 16, 6867 (2008)

    Article  Google Scholar 

  28. J. Jung, T. Søndergaard, S.I. Bozhevolnyi, Phys. Rev. B 76, 035434 (2007)

    Article  Google Scholar 

  29. A. Pors, M. Willatzen, O. Albrektsen, S.I. Bozhevolnyi, J. Comput. Theor. Nanosci. 8, 1619 (2011)

    Article  CAS  Google Scholar 

  30. E. Plum, X.X. Liu, V.A. Fedotov, Y. Chen, D.P. Tsai, N.I. Zheludev, Phys. Rev. Lett. 102, 113902 (2009)

    Article  CAS  Google Scholar 

  31. E. Plum, V.A. Fedotov, N.I. Zheludev, J. Opt. A: Pure Appl. Opt. 11, 074009 (2009)

    Article  Google Scholar 

  32. A. Alù, Y. Zhao, X.X. Liu, in URSI Proceedings (2011)

    Google Scholar 

  33. D.R. Smith, S. Schultz, P. Markos̆, C.M. Soukoulis, Phys. Rev. B 65, 195104 (2002)

    Google Scholar 

  34. M.G. Nielsen, A. Pors, O. Albrektsen, M. Willatzen, S.I. Bozhevolnyi, J. Opt. 13, 055106 (2011)

    Article  Google Scholar 

  35. N. Liu, M. Mesch, T. Weiss, M. Hentschel, H. Giessen, Nano Lett. 10, 2342 (2010)

    Article  CAS  Google Scholar 

  36. S. Zhang, W. Fan, K.J. Malloy, S.R.J. Brueck, J. Opt. Soc. Am. B 23, 434 (2006)

    Article  Google Scholar 

  37. J.N. Anker, W.P. Hall, O. Lyandres, N.C. Shah, J. Zhao, R.P.V. Duyne, Nat. Mater. 7, 442 (2008)

    Article  CAS  Google Scholar 

  38. L.J. Sherry, S.H. Chang, G.C. Schatz, R.P.V. Duyne, Nano Lett. 5, 2034 (2005)

    Article  CAS  Google Scholar 

  39. L.J. Sherry, R. Jin, C.A. Mirkin, G.C. Schatz, R.P.V. Duyne, Nano Lett. 5, 2060 (2006)

    Article  Google Scholar 

  40. V.G. Kravets, F. Schedin, A.N. Grigorenko, Phys. Rev. Lett. 101, 087403 (2008)

    Article  CAS  Google Scholar 

  41. J.M. McMahon, J. Henzie, T.W. Odom, G.C. Schatz, S.K. Gray, Opt. Express 15, 18119 (2007)

    Article  Google Scholar 

  42. J. Henzie, M.H. Lee, T.W. Odom, Nat. Nanotechnol. 2, 549 (2007)

    Article  CAS  Google Scholar 

  43. B. Luk’yanchuk, N.I. Zheludev, S.A. Maier, N.J. Halas, P. Nordlander, H. Giessen, C.T. Chong, Nat. Mater. 9, 707 (2007)

    Article  Google Scholar 

  44. J.B. Lassiter, H. Sobhani, J.A. Fan, J. Kundu, F. Capasso, P. Nordlander, N.J. Halas, Nano Lett. 10, 3184 (2010)

    Article  CAS  Google Scholar 

  45. N. Verellen, P.V. Dorpe, C. Huang, K. Lodewijks, G.A.E. Vandenbosch, L. Lagae, V.V. Moshchalkov, Nano Lett. 11, 391 (2011)

    Article  CAS  Google Scholar 

  46. C. Wu, A.B. Khanikaev, R. Adato, N. Arju, A.A. Yanik, H. Altug, G. Shvets, Nat. Mater. 11, 69 (2012)

    Article  CAS  Google Scholar 

  47. T. Pakizeh, M. Käll, Nano Lett. 9, 2343 (2009)

    Article  CAS  Google Scholar 

  48. T. Shegai, S. Chen, V.D. Miljković, G. Zengin, P. Johansson, M. Käll, Nat. Commun. 2, 481 (2011)

    Article  Google Scholar 

  49. I.P. Radko, A.B. Evlyukhin, A. Boltasseva, S.I. Bozhevolnyi, Opt. Express 16, 3924 (2008)

    Article  Google Scholar 

  50. F. Xu, R.C. Tyan, P.C. Sun, Y. Fainman, Opt. Lett. 20, 2457 (1995)

    Article  CAS  Google Scholar 

  51. G.P. Nordin, P.C. Deguzman, Opt. Express 5, 163 (1999)

    Article  CAS  Google Scholar 

  52. W. Yu, A. Mizutani, H. Kikuta, T. Konishi, Appl. Opt. 45, 2601 (2006)

    Article  CAS  Google Scholar 

  53. S.H. Yang, M.L. Cooper, P.R. Bandaru, S. Mookherjea, Opt. Express 16, 8306 (2008)

    Article  Google Scholar 

  54. L.H. Cescato, E. Gluch, N. Streibl, Appl. Opt. 29, 3286 (1990)

    Article  CAS  Google Scholar 

  55. S.Y. Hsu, K.L. Lee, E.H. Lin, M.C. Lee, P.K. Wei, Appl. Phys. Lett. 95, 013105 (2009)

    Article  Google Scholar 

  56. A. Drezet, C. Genet, T.W. Ebbesen, Phys. Rev. Lett. 101, 043902 (2008)

    Article  Google Scholar 

  57. G.F. Brand, Am. J. Phys. 71, 452 (2003)

    Article  Google Scholar 

  58. W. Cai, V. Shalaev, Optical Metamaterials: Fundamentals and Applications (Springer, New York, 2009)

    Google Scholar 

  59. S.K.N. Liu, H. Giessen, Adv. Mater. 20, 4521 (2008)

    Article  CAS  Google Scholar 

  60. F.I. Baida, M. Boutria, R. Oussaid, D.V. Labeke, Phys. Rev. B 84, 035107 (2011)

    Article  Google Scholar 

  61. E.H. Khoo, E.P. Li, K.B. Crozier, Opt. Lett. 36, 2498 (2011)

    Article  Google Scholar 

  62. Y. Zhao, A. Alù, Phys. Rev. B 84, 205428 (2011)

    Article  Google Scholar 

  63. A. Roberts, L. Lin, Opt. Lett. 37, 1820 (2012)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anders Pors .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pors, A., Nielsen, M.G., Bozhevolnyi, S.I. (2013). Plasmonic Functionalities Based on Detuned Electrical Dipoles. In: Shahbazyan, T., Stockman, M. (eds) Plasmonics: Theory and Applications. Challenges and Advances in Computational Chemistry and Physics, vol 15. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7805-4_11

Download citation

Publish with us

Policies and ethics