Skip to main content

Waves on Subwalength Metallic Surfaces: A Microscopic View Point

  • Chapter
  • First Online:
Plasmonics: Theory and Applications

Part of the book series: Challenges and Advances in Computational Chemistry and Physics ((COCH,volume 15))

Abstract

At a microscopic level, the electromagnetic properties of subwavelength metallic surfaces are due to two kinds of elementary distinct waves, the surface plasmon polaritons and the quasi-cylindrical waves. These waves are launched on the metal surface by the scattering of the incident field on the subwavelength indentations, and are subsequently scattered by adjacent indentations to ultimately form a complex surface charge pattern that is responsible of various fascinating phenomena. We review the fundamental properties that govern these waves and discuss their impacts in the Wood anomaly of metallic gratings, a phenomenon historically attributed to surface plasmon polaritons since the milestone work by U. Fano [10].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L. Aigouy, P. Lalanne, J.P. Hugonin, G. Julie, V. Mathet, M. Mortier, Near-field analysis of surface waves launched at nanoslit apertures. Phys. Rev. Lett. 98, 153902 (2007)

    Article  CAS  Google Scholar 

  2. A. Banos, Dipole Radiation in the Presence of a Conducting Half-Space (Pergamon Press, Oxford, 1966)

    Google Scholar 

  3. W.L. Barnes, Topical review: fluorescence near interfaces: the role of photonic mode density. J. Mod. Opt. 45, 661–699 (1998)

    Article  CAS  Google Scholar 

  4. F. van Beijnum, C. Rétif, C.B. Smiet, H.T. Liu, P. Lalanne, M.P. van Exter, Quasi-Cylindrical Wave Contribution in Experiments on Extraordinary Optical Transmission, Nature. 492, 411–414 (2012)

    Google Scholar 

  5. L. Chen, J.T. Robinson, M. Lipson, Role of radiation and surface plasmon polaritons in the optical interactions between a nano-slit and a nano-groove on a metal surface. Opt. Express 14, 12629 (2006)

    Article  Google Scholar 

  6. R.E. Collin, Hertzian dipole radiating over a lossy earth or sea: some early and late 20th century controversies. IEEE Antennas Prop. Mag. 46, 64 (2004)

    Article  Google Scholar 

  7. W. Dai, C. Soukoulis, Theoretical analysis of the surface wave along a metal-dielectric interface. Phys. Rev. B 80, 155407 (2009)

    Article  Google Scholar 

  8. H. Ditlbacher, J.R. Krenn, G. Schider, A. Leitner, F.R. Aussenegg, Two-dimensional optics with surface plasmon polaritons. Appl. Phys. Lett. 81, 1762–1764 (2002)

    Article  CAS  Google Scholar 

  9. T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff, Extraordinary optical transmission through subwavelength hole arrays. Nature 391, 667–669 (1998)

    Article  CAS  Google Scholar 

  10. U. Fano, The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld’s waves). J. Opt. Soc. Am. 31, 213–222 (1941)

    Article  Google Scholar 

  11. G. Gay, O. Alloschery, B. Viaris de Lesegno, C. O’Dwyer, J. Weiner, and H.J. Lezec, The optical response of nanostructured surfaces and the composite diffracted evanescent wave model. Nat. Phys. 2, 262–267 (2006)

    Google Scholar 

  12. X. Huang, M.L. Brongersma, Rapid computation of light scattering from aperiodic plasmonic structures. Phys. Rev. B 84, 245120 (2011)

    Article  Google Scholar 

  13. P. Lalanne, J.P. Hugonin, Interaction between optical nano-objects at metallo-dielectric interfaces. Nat. Phys. 2, 551–556 (2006)

    Article  CAS  Google Scholar 

  14. P. Lalanne, J.P. Hugonin, H.T. Liu, B. Wang, A microscopic view of the electromagnetic properties of sub-\(\lambda \) metallic surfaces. Surf. Sci. Rep. 64, 453–469 (2009)

    Article  CAS  Google Scholar 

  15. G.Y. Li, F. Xiao, L. Cai, K. Alameh, A.S. Xu, Theory of the scattering of light and surface plasmon polaritons by finite-size subwavelength metallic defects via field decomposition. New J. Phys. 13, 073045 (2011)

    Article  Google Scholar 

  16. H.T. Liu, P. Lalanne, Microscopic theory of the extraordinary optical transmission. Nature 452, 728–731 (2008)

    Article  CAS  Google Scholar 

  17. H.T. Liu, P. Lalanne, Light scattering by metallic surfaces with subwavelength patterns. Phys. Rev. B 82, 115418 (2010)

    Article  Google Scholar 

  18. L. Martín-Moreno, F.J. García-Vidal, H.J. Lezec, K.M. Pellerin, T. Thio, J.B. Pendry, T.W. Ebbesen, Theory of extraordinary optical transmission through subwavelength hole arrays. Phys. Rev. Lett. 86, 1114–1117 (2001)

    Article  Google Scholar 

  19. A.Y. Nikitin, S.G. Rodrigo, F.J. Garcìa-Vidal, L. Martìn-Moreno, In the diffraction shadow: Norton waves versus surface plasmon polaritons in the optical region. New J. Phys. 11, 123020 (2009)

    Article  Google Scholar 

  20. A.Y. Nikitin, F.J. Garcìa-Vidal, L. Martìn-Moreno, Surface electromagnetic field radiated by a subwavelength hole in a metal film. Phys. Rev. Lett. 105, 073902 (2010)

    Article  Google Scholar 

  21. K.A. Norton, Propagation of radio waves over a plane earth. Nature 135, 954 (1935)

    Article  Google Scholar 

  22. K.A. Norton, The propagation of radio waves over the surface of the earth and in the upper atmosphere. Proc. IRE 24, 1367–1387 (1936)

    Google Scholar 

  23. K.A. Norton, The propagation of radio waves over the surface of the earth and in the upper atmosphere. Proc. IRE 25, 1203–1236 (1937)

    Google Scholar 

  24. E.D. Palik (ed.), in Handbook of Optical Constants of Solids, Part II(1) (Academic Press, New York, 1985)

    Google Scholar 

  25. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, Berlin, 1988)

    Google Scholar 

  26. L. Rayleigh, On the Dynamical Theory of Gratings. Proc. R. Soc. (London) A. 79, 399–416 (1907)

    Google Scholar 

  27. R.H. Ritchie, Plasma losses by fast electrons in thin films. Phys. Rev. 106, 874–881 (1957)

    Article  CAS  Google Scholar 

  28. M. Righini, A.S. Zelenina, C. Girard, R. Quidant, Parallel and selective trapping in a patterned plasmonic landscape. Nat. Phys. 3, 477–480 (2007)

    Article  CAS  Google Scholar 

  29. A. Sommerfeld, The broadening of the waves and the wireless telegraph. Ann. der Physik 28, 665–736 (1909)

    Article  Google Scholar 

  30. A. Sommerfeld, The propagation of waves in wireless telegraphy. Ann. der Physik 81, 1135–1153 (1926)

    Article  Google Scholar 

  31. M. Specht, J.D. Pedarning, W.M. Heckl, T.W. Hänsch, Scanning plasmon near-field microscope. Phys. Rev. Lett. 68, 476–479 (1992)

    Article  CAS  Google Scholar 

  32. J. Strong, Effect of evaporated films on energy distribution in grating spectra. Phys. Rev. 49, 291–296 (1936)

    Article  CAS  Google Scholar 

  33. B. Ung, Y.L. Sheng, Optical surface waves over metallo-dielectric nanostructures. Opt. Express 16, 9073–9086 (2008)

    Article  Google Scholar 

  34. C. Vassallo, Optical Waveguide Concepts (Elsevier, Amsterdam, 1991)

    Google Scholar 

  35. R.W. Wood, On a remarkable case of uneven distribution of light in a diffraction grating spectrum. Philos. Mag. 4, 396–402 (1902)

    Article  Google Scholar 

  36. X.Y. Yang, H.T. Liu, P. Lalanne, Cross conversion between surface plasmon polaritons and quasicylindrical waves. Phys. Rev. Lett. 102, 153903 (2009)

    Article  CAS  Google Scholar 

  37. I. Zenneck, Propagation of plane electromagnetic waves along a plane conducting surface and its bearing on the theory of transmission in wireless telegraphy. Ann. Phys. 23, 846 (1907). http://web.mit.edu/redingtn/www/netadv/zenneck.html

  38. N.I. Zheludev, S.L. Prosvirnin, N. Papasimakis, V.A. Fedotov, Lasing spaser. Nat. Photon. 2, 351 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Haitao Liu acknowledges financial supports from the National Natural Science Foundation of China (No. 10804057), from the Cultivation Fund of the Key Scientific and Technical Innovation Project, Ministry of Education of China (No. 708021), from the 973 Project (No. 2007CB307001), and from the Natural Science Foundation of Tianjin (No. 11JCZDJC15400). Jean Claude Rodier, Lionel Aigouy, Xiaoyan Yang, Jacques Giérak, Eric Bourhis, Christophe Sauvan, Stéphane Collin, Lionel Jacobowiez and Jean Paul Hugonin are acknowledged for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Lalanne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lalanne, P., Liu, H. (2013). Waves on Subwalength Metallic Surfaces: A Microscopic View Point. In: Shahbazyan, T., Stockman, M. (eds) Plasmonics: Theory and Applications. Challenges and Advances in Computational Chemistry and Physics, vol 15. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7805-4_10

Download citation

Publish with us

Policies and ethics