Skip to main content

The Impact of Integrated Pest Management Programs on Pesticide Use in California, USA

  • Chapter
  • First Online:
Integrated Pest Management

Abstract

Integrated Pest Management (IPM) is often promoted to farmers as a method that can provide the most economical, sustained disease and pest control, but promoted to the public as a method to reduce agricultural pesticide use. California has a public infrastructure for supporting IPM research and implementation, largely through the University of California IPM program. California’s Department of Pesticide Regulation’s Pesticide Use Reports provide a system to track pesticide use state-wide. In practice, IPM in California is extremely pesticide-dependent, particularly in weed control and in agricultural production systems that rely on soil fumigation, such as strawberries. During our study period between 1993 and 2010, California had a decrease in use of 88 % of the highly-used pesticides listed for regulatory concern for human health. However, most of these pesticides were replaced with other chemicals rather than with non-chemical methods. We feature several case studies that illustrate key issues in California IPM: the limited progress in meeting Montreal Protocol guidelines for methyl bromide phase-out due to critical use exemptions for strawberry producers; a successful IPM program to decrease use of dormant-season organophosphates that are important water pollutants; the increase in use of neonicotinoid insecticides, which might have a role in the current bee colony collapse disorder; and the limited use of all of the commercialized microbial biocontrol agents except for Bacillus thuringiensis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alarcón-Reverte, R., Alejandro García, A., Jaime Urzúa, J., & Fischer, A. J. (2013). Resistance to glyphosate in Junglerice (Echinochloa colona) from California. Weed Science, 61(1), 48–54.

    Google Scholar 

  • Alcorta, M., Fiedlibus, M. W., Steenwerth, K. L., & Shrestha, A. (2011). Competitive effects of glyphosate-resistant and glyphosate-susceptible horseweed (Conyza canadensis) on young grapevines (Vitis vinifera). Weed Science, 59(4), 489–494.

    Article  CAS  Google Scholar 

  • Bailey, H. C., Deanovic, L., Reyes, E., Kimball, T., Larson, K., Cortright, K., Connor, V., & Hinton, D. E. (2000). Diazinon and chlorpyrifos in urban waterways in Northern California, USA. Environmental Toxicology and Chemistry, 19(1), 82–87.

    Article  CAS  Google Scholar 

  • Barnes, C., Sutherland, S., Brattesani, M., Wilhoit, L., & Messenger, B. (2012). A survey of California public school districts’ ant and weed management practices and a review of their use of IPM. Journal of Environmental Health, 74(8), 18–22.

    PubMed  Google Scholar 

  • Benbrook, C. M. (2012). Impacts of genetically engineered crops on pesticide use in the U.S.—the first sixteen years. Environmental Sciences Europe, 24, 24. doi:10.1186/2190-4715-24-24.

    Article  Google Scholar 

  • Brewer, M. J., & Goodell, P. B. (2012). Approaches and incentives to implement integrated pest management that addresses regional and environmental issues. Annual Review of Entomology, 57(57), 41–59.

    Article  CAS  PubMed  Google Scholar 

  • Brodt, S. B., Goodell, P. B., Krebill-Prather, R. L., & Vargas, R. N. (2007). California cotton growers utilize integrated pest management. California Agriculture, 61(1), 24–30.

    Article  Google Scholar 

  • California Department of Food and Agriculture. (2013). California Agricultural Statistics Review, 2012-2013. Sacramento: California Department of Food and Agriculture. http://www.cdfa.ca.gov/statistics/pdfs/2013/FinalDraft2012-2013.pdf. Accessed 4 Feb 2014.

    Article  Google Scholar 

  • Castle, S. J., Goodell, P. B., & Palumbo, J. C. (2009). Implementing principles of the integrated control concept 50 years later—current challenges in IPM for arthropod pests. Pest Management Science, 65(12), 1263–1264.

    Article  CAS  PubMed  Google Scholar 

  • Carpenter, J., Lynch, L., & Trout, T. (2001). Township limits on 1,3-D will impact adjustment to methyl bromide phase-out. California Agriculture, 55(3), 12–18.

    Article  Google Scholar 

  • Casida, J. E. (2012). The greening of pesticide-environment: Some personal observations. Environmental Health Perspectives, 120(4), 487–493.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Daugovish, O., Muramoto, J., Shannon, C., Bolda, M., & Koike, S. (2011). Anaerobic soil disinfestation for southern California strawberries. Proceedings annual international research conference on methyl bromide alternatives and emissions reductions. http://mbao.org/2011/Proceedings/02DaugovishOASDSOCAL.pdf. Accessed 20 Sept 2013.

  • Davidson, C. (2004). Declining downwind: Amphibian population declines in California and historical pesticide use. Ecological Applications, 14(6), 1892–1902.

    Article  Google Scholar 

  • Devine, G. J., & Furlong, M. J. (2007). Insecticide use: Contexts and ecological consequences. Agriculture and Human Values, 24(3), 281–306.

    Article  Google Scholar 

  • Duke, S. O., & Powles, S. B. (2008). Glyphosate: A once-in-a-century herbicide. Pest Management Science, 64(4), 319–325.

    Article  CAS  PubMed  Google Scholar 

  • Duniway, J. M. (2002). Status of chemical alternatives to methyl bromide for pre-plant fumigation of soil. Phytopathology, 92(12), 1337–1343.

    Article  CAS  PubMed  Google Scholar 

  • Ehler, L. E. (2006). Integrated pest management (IPM): Definition, historical development and implementation, and the other IPM. Pest Management Science, 62(9), 787–789.

    Article  CAS  PubMed  Google Scholar 

  • Epstein, L. (2006). California’s Pesticide Use Reports and trends in pesticide use. Outlooks on Pest Management, 17(4), 148–154.

    Article  Google Scholar 

  • Epstein, L., & Bassein, S. (2001). Pesticide applications of copper on perennial crops in California, 1993–1998. Journal of Environmental Quality, 30(5), 1844–1847.

    Article  CAS  PubMed  Google Scholar 

  • Epstein, L., & Bassein, S. (2003). Patterns of pesticide use in California and the implications for strategies for reduction of pesticides. Annual Review of Phytopathology, 41, 351–375.

    Article  CAS  PubMed  Google Scholar 

  • Epstein, L., Bassein, S., & Zalom, F. G. (2000). Almond and stone fruit growers reduce OP, increase pyrethroid use in dormant sprays. California Agriculture, 54(6), 14–19.

    Article  Google Scholar 

  • Epstein, L., Bassein, S., Zalom, F. G., & Wilhoit, L. R. (2001). Changes in pest management practice in almond orchards during the rainy season in California USA. Agriculture, Ecosystems and the Environment, 83(1–2), 111–120.

    Article  Google Scholar 

  • Fennimore, S., & Ajwa, H. (2011). Totally impermeable film retains fumigants, allowing lower application rates in strawberry. California. Agriculture, 65(4), 211–215.

    Google Scholar 

  • Flint, M. L., Dreistadt, S. H., Zagory, E. M., & Rosetta, R. (1993). IPM reduces pesticide use in the nursery. California Agriculture, 47(4), 4–7.

    Google Scholar 

  • Fox, J. E., Gulledge, J., Engelhaupt, E., Burow, M. E., & McLachlan, J. A. (2007). Pesticides reduce symbiotic efficiency of nitrogen-fixing rhizobia and host plants. Proceedings of the National Academy of Sciences, USA, 104(24), 10282–10287.

    Google Scholar 

  • Gareau, B. J., & DuPuis, E. M. (2009). From public to private global environmental governance: Lessons from the Montreal Protocol’s stalled methyl Bromide phase-out. Environment & Planning A, 41(10), 2305–2323.

    Article  Google Scholar 

  • Gilliom, R. J., Barbash, J. E., Crawford, C. G., Hamilton, P. A., & Martin, J. D., et al. (2006). The quality of our nation’s water—pesticides in the nation’s streams and ground water, 1992–2001. Circular 1291. US Geol. Surv., Reston, VA.

    Google Scholar 

  • Goodell, P., Fossen, M., & Hartley, C. (2011). Volatile organic compounds, pesticides and IPM: Dealing with air quality standards in pest management in California, US. Outlooks on Pest Management, 22(1), 10–13.

    Article  Google Scholar 

  • Goodhue, R. E., Fennimore, S. A., & Ajwa, H. A. (2005). The economic importance of methyl bromide: Does the California strawberry industry qualify for a critical use exemption from the methyl bromide ban? Review of Agricultural Economics (Now Applied Economic Perspectives and Policy), 27(2), 198–211.

    Article  Google Scholar 

  • Graebner, L., Moreno, D. S., & Baritelle, J. L. (1984). The fillmore citrus protective district: A success story in integrated pest management. Bulletin of the Entomological Society of America, 30(4), 27–33.

    Google Scholar 

  • Grafton-Cardwell, E. E., & Gu, P. (2003). Conserving vedalia beetle, Rodolia cardinalis (Mulsant) (Coleoptera: Coccinellidae), in citrus: A continuing challenge as new insecticides gain registration. Journal of Economic Entomology, 96(5), 1388–1398.

    Article  CAS  PubMed  Google Scholar 

  • Grahl, C. (1992). Methyl bromide under siege. Pest Control, 60(4), 34, 39.

    Google Scholar 

  • Grube, A., Donaldson, D., Kiely, T., & Wu, L. (2011). Pesticide industry sales and usage. 2006 and 2007 market estimates. U.S. Environmental Protection Agency. Washington, DC. http://www.epa.gov/opp00001/pestsales/07pestsales/market_estimates2007.pdf. Accessed 20 Sept 2013.

  • Gubler, W. D., Rademacher, M. R., Vasquez, S. J., & Thomas, C. S. (1999). Control of powdery mildew using the UC Davis powdery mildewrisk index. APSnet. http://www.apsnet.org/publications/apsnetfeatures/Pages/UCDavisRisk.aspx. Accessed 20 Sept 2013.

  • Hanson, B. D., Shrestha, A., & Shander, D. L. (2009). Distribution of glyphosate-resistant horseweed (Conyza canadensis) and relationship to cropping systems in the Central Valley of California. Weed Science, 57(1), 48–53.

    Article  CAS  Google Scholar 

  • Hendricks, L. C. (1995). Almond growers reduce pesticide use in Merced County field trials. California Agriculture, 49(1), 5–10.

    Article  Google Scholar 

  • Henry, M., Béguin, M., Requier, F., Rollin, O., Odoux, J.-F., Aupinel, P., Aptel, J., Tchamitchian, S., & Decourtye, A. (2012). A common pesticide decreases foraging success and survival in honey bees. Science, 336(6079), 348–350.

    Article  CAS  PubMed  Google Scholar 

  • Isawa, T., Motoyama, N., Ambrose, J. T., & Roe, R. M. (2004). Mechanism for the differential toxicity of neonicotinoid insecticides in the honey bee, Apis mellifera. Crop Protection, 23(5), 371–378.

    Article  Google Scholar 

  • Jasieniuk, M., Ahmad, R., Sherwood, A. M., Firestone, J. L., Perez-Jones, A., Lanini, W. T., Mallory-Smith, C., & Stednick, Z. (2008). Glyphosate-resistant Italian ryegrass (Lolium multiflorum) in California: Distribution, response to glyphosate, and molecular evidence for an altered target enzyme. Weed Science, 56(4), 496–502.

    Google Scholar 

  • Johnson, H., Jr., Holland, A. H., Paulus, A. O., & Wilhelm, S. (1962). Soil fumigation found essential for maximum strawberry yields in Southern California. California Agriculture, 16(10), 5–6.

    Google Scholar 

  • Kennedy, G. G. (2008). Integration of insect-resistant genetically modified crops within IPM programs. In J. Romeis, A. M. Shelton, & G. G. Kennedy (Eds.), Progress in biological control (Vol. 5, pp. 1–26). Netherlands: Springer.

    Google Scholar 

  • Klonsky, K. (2012). Marketing issues and opportunities in organic agriculture. ARE Update, 15(6), 1–2. University of California Giannini Foundation of Agricultural Economics.

    Google Scholar 

  • Koike, S. T. (2008). Crown rot of strawberry caused by Macrophomina phaseolina in California. Plant Disease, 92(8), 1253.

    Article  Google Scholar 

  • Koike, S. T., Kirkpatrick, S. C., & Gordon, T. R. (2009). Fusarium wilt of strawberry caused by; in California. Plant Disease, 93(10), 1077.

    Article  Google Scholar 

  • Kretschmer, M., Leroch, M., Mosbach, A., Walker, A.-S., & Fillinger, S., et al. (2009). Fungicide-driven evolution and molecular basis of multidrug resistance in field populations of the grey mould fungus Botrytis cinerea. PLoS Pathogens, 5(12), e1000696.

    Article  PubMed Central  PubMed  Google Scholar 

  • Larson, K. D., & Shaw, D. V. (1995). Strawberry nursery soil fumigation and runner plant production. HortScience, 30(2), 236–237.

    Google Scholar 

  • Leach, A., & Mumford, J. (2008). Pesticide environmental accounting: A method for assessing the external costs of individual pesticide applications. Environmental Pollution, 151(1), 139–147.

    Article  CAS  PubMed  Google Scholar 

  • Maupin, J., & Norton, G. (2010). Pesticide use and IPM adoption: Does IPM reduce pesticide use in the United States? Paper presented at: Agricultural & Applied Economics Association Annual Meeting, Denver, CO, July 25–27, 2010. http://ageconsearch.umn.edu/bitstream/61306/2/10874.pdf. Accessed 22 June 2012.

  • Mayfield, E. N., & Norman, C. S. (2012). Moving away from methyl bromide: Political economy of pesticide transition for California strawberries since 2004. Journal of Enviromental Management, 106, 93–101.

    Article  Google Scholar 

  • McGrath, M. T. (2012). Challenge of fungicide resistance and anti-resistance strategies in managing vegetable diseases in the USA. In T. S. Thind (Ed.), Fungicide resistance in crop protection: Risk and management (pp. 191–207). Oxfordshire, U.K: CABI.

    Google Scholar 

  • Millhouse, D. E., & Munnecke, D. E. (1979). Increased growth of Nicotiana glutinosa as partially related to accumulation of ammonium-nitrogen in soil fumigated with methyl bromide. Phytopathology, 69(8), 793–797.

    Article  CAS  Google Scholar 

  • Mills, N. J., & Daane, K. M. (2005). Nonpesticidal alternatives can suppress crop pests. California Agriculture, 59(1), 23–28.

    Article  Google Scholar 

  • Mullen, J. D., Alston, J. M., Sumner, D. A., Kreith, M. T., & Kuminoff, N. V. (2003). Returns to University of California Pest Management Research and Extension. Overview and Case Studies Emphasizing IPM. University of California Agricultural Issues Center ANR Publication 3482.

    Google Scholar 

  • Mullen, J. D., Alston, J. M., Sumner, D. A., Kreith, M. T., & Kuminoff, N. V. (2005). The payoff to public investment in pest-management R & D: General issues and a case study emphasizing integrated pest management in California. Review of Agricultural Economics, 27(4), 558–573.

    Article  Google Scholar 

  • Munier, D. J., Brittan, K. L., & Lanini, W. T. (2012). Seed bank persistance of genetically modified canola in California. Environmental Science and Pollution Research, 19(6), 2281–2284.

    Article  CAS  PubMed  Google Scholar 

  • Morgan, D. P., Liebman, J. A., & Epstein, L. (1991). Solarizing soil planted with cherry tomatoes vs. solarizing fallow ground for control of Verticillium wilt. Plant Disease, 75(2), 148–151.

    Article  Google Scholar 

  • Pimentel, D. (2009). Environmental and economic costs of the application of pesticides primarily in the United States. In R. Peshin & A. K. Dhawan (Eds.), Integrated pest management: Innovation-development process. Netherlands: Springer.

    Google Scholar 

  • Pretty, J. (2005). Sustainability in agriculture: Recent progress and emergent challenges. Sustainability in agriculture. Issues in Environmental Science and Technology, 21, 1–15.

    Article  Google Scholar 

  • Rauh, V. A., Perera, F. P., Horton, M. K., Whyatt, R. M., Bansal, R., Hao, X., Liu, J., Barr, D. B., Slotkin, T. A., & Peterson, B. S. (2012). Brain anomalies in children exposed prenatally to a common organophosphate pesticide. Proceedings of the National Academy Sciences U S A, 109(20), 7871–7876.

    Google Scholar 

  • Reitz, S. R., Kund, G. S., Carson, W. G., Phillips, P. A., & Trumble, J. T. (1999). Economics of reducing insecticide use on celery through low-input pest management strategies. Agriculture Ecosystems & Environment, 73(3), 185–197.

    Article  Google Scholar 

  • Rice, R. E., Jones, R. A., & Black, J. H. (1972). Dormant sprays with experimental insecticides for control of peach twig borer. California Agriculture, 26(1), 14.

    Google Scholar 

  • Saenz de Cabezon, F. J., Zalom, F. G., & Lopez-Olgui, J. F. (2010). A review of recent patents on macroorganisms as biological control agents. Recent Patents in Biotechnology, 4(1), 1–17.

    Google Scholar 

  • Samtani, J. B., Gilbert, C., Weber, J. B., Subbarao, K. V., Goodhue, R. E., & Fennimore, S. A. (2012). Effect of steam and solarization treatments on pest control, strawberry yield, and economic returns relative to methyl bromide fumigation. HortScience, 47(1), 64–70.

    CAS  Google Scholar 

  • Schafer, K. S. (1999). Methyl bromide phase-out strategies: A global compilation of laws and regulations. United Nations Environment Programme: Nairobi, Kenya, p. 141. http://www.unep.fr/ozonaction/information/mmcfiles/3020-e.pdf. Accessed 4 Aug 2012.

  • Schneider, S. M., Rosskopf, E. N., Leesch, J. G., Chellemi, D. O., Bull, C. T., & Mazzola, M. (2003). United States Department of Agriculture- Agricultural Research Service research on alternatives to methyl bromide: Pre-plant and post-harvest. Pest Management Science, 59(6–7), 814–826.

    Article  CAS  PubMed  Google Scholar 

  • Schneider, C. W., Tautz, J., Grünewald, B., & Fuchs, S. (2012). RFID tracking of sublethal effects of two neonicotinoid insecticides on the foraging behavior of Apis mellifera. PLoS ONE, 7(1), e30023, 9.

    Google Scholar 

  • Shennan, C., Muramoto, J., Koike, S., Bolda, M., Daugovish, O., Rosskopf, E., & Kokalis-Burelle, N. (2011). MBAO Proceedings Optimizing anaerobic soil disinfestation for non-fumigated strawberry production in California. San Diego, CA, 44, 1–4.

    Google Scholar 

  • Starner, K., & Goh, K. S. (2012). Detections of the neonicotinoid insecticide imidacloprid in surface waters of three agricultural regions of California, USA, 2010–2011. Bulletin of Environmental Contamination and Toxicology, 88(3), 316–321.

    Article  CAS  PubMed  Google Scholar 

  • Stern, V. M., Smith, R. F., van den Bosch, R., & Hagen, K. S. (1959). The integrated control concept. Hilgardia, 29(2), 81–102.

    CAS  Google Scholar 

  • Stromberger, M. E., Klose, S., Ajwa, H., Trout, T., & Fennimore, S. (2005). Microbial populations and enzyme activities in soils fumigated with methyl bromide alternatives. Soil Science Society of America Journal, 69(6), 1987–1999.

    Article  CAS  Google Scholar 

  • Swezey, S. L., Goldman, P., Bryer, J., & Nieto, D. (2007). Six-year comparison between organic IPM and conventional cotton production systems in the Northern San Joaquin Valley, Callifornia. Renewable Agriculture and Food Systems, 22(1), 30–40.

    Article  Google Scholar 

  • Trumble, J. T., Carson, W. G., & Kund, G. S. (1997). Economics and environmental impact of a sustainable integrated pest management program in celery. Journal of Economic Entomology, 90(1), 139–146.

    Google Scholar 

  • USDA. (2011). Table 5-70.-Strawberries, commercial crop: Production and value per hundredweight, by State and United States, 2008-2010. In Statistical Abstract of the United States 2011. Washington, DC: U.S. Government Printing Office. http://www.nass.usda.gov/Publications/Ag_Statistics/2011/2011_Final.pdf. Accessed 4 Feb 2014.

    Google Scholar 

  • U.S. GAO. (2001). Agricultural pesticides: Management improvements needed to further promote integrated pest management. GAO-01-815. Washington, DC: US GAO.

    Google Scholar 

  • Van Steenwyk, R. A., & Zalom, F. G. (2005). Food quality protection act (FQPA) launches search for pest management alternatives. California Agriculture, 59(1), 7–10.

    Article  Google Scholar 

  • Varela, L. G., & Elkins, R. B. (2008). Conversion from use of organophosphate insecticides to coddling moth mating disruption in California pear orchards. In A. D. Webster & C. M. Oliveira (Eds.), Proceedings of the Xth International Symposium on Pear, Acta Horticulturae 800, International Society of Horticultural Science (pp. 955–959).

    Google Scholar 

  • Waterfield, G., & Zilberman, D. (2012). Pest management in food systems: An economic perspective. Annual Review of Environment and Resources, 37, 223–245.

    Google Scholar 

  • Weddle, P. W., Welter, S. C., & Thomson, D. (2009). History of IPM in California pears—50 years of pesticide use and the transition to biologically intensive IPM. Pest Management Science, 65(12), 1287–1292.

    Article  CAS  PubMed  Google Scholar 

  • Wilhelm, S., & Koch, E. C. (1956). Verticillium wilt controlled: Chloropicrin achieves effective control of Verticillium wilt in strawberry plantings if properly applied as a soil fumigant. California Agriculture, 10(6), 3–14.

    Google Scholar 

  • Wilhelm, S., & Paulus, A. O. (1980). How soil fumigation benefits the California strawberry industry. Plant Disease, 64(3), 264–270.

    Google Scholar 

  • Whitehorn, P. R., O’Connor, S., Wackers, F. L., & Goulson, D. (2012). Neonicotinoid pesticide reduces bumble bee colony growth and queen production. Science, 335(6076), 351–352.

    Google Scholar 

  • Zalom, F. G. (1996). California’s integrated pest management program. In E. B. Radcliffe & W. D. Hutchison (Eds.), Radcliffe’s IPM world textbook. http://ipmworld.umn.edu. University of Minnesota: St. Paul, MN.

  • Zalom, F. G., Toscano, N., & Byrne, F. J. (2005). Managing resistance is critical to future use of pyrethroids and neonicotinoids. California Agriculture, 59(1), 11–15.

    Google Scholar 

  • Zalucki, M. P., Adamson, D., & Furlong, M. J. (2009). The future of IPM: Whither or wither? Australian Journal of Entomology, 48(2), 85–96.

    Article  Google Scholar 

  • Zhang, X., & Zhang, M. (2011). Modeling effectiveness of agricultural BMPs to reduce sediment load and organophosphate pesticides in surface runoff. Science of the Total Environment, 409(10), 1949–1958.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Wan-Ru Yang for compilation of Pesticide Use Report data and our Integrated Pest Management colleagues for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lynn Epstein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Epstein, L., Zhang, M. (2014). The Impact of Integrated Pest Management Programs on Pesticide Use in California, USA. In: Peshin, R., Pimentel, D. (eds) Integrated Pest Management. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7802-3_7

Download citation

Publish with us

Policies and ethics