Skip to main content

Mechanistic Principles of Photocatalytic Reaction

  • Chapter
  • First Online:
Heterogeneous Photocatalysis Using Inorganic Semiconductor Solids

Abstract

As developments in semiconductor photocatalysis flourish, profound success is being recorded in the elucidation of reactivity vis-à-vis mechanism. The mechanism of photocatalytic reactions lies between two limits. From viewpoint of photochemical kinetics, the reaction mechanism will be controlled by the properties of light and consequences of light absorption. However as mass transfer dominates, the process will be controlled by the non-catalytic diffusion mechanism. This chapter highlights both diffusion and photocatalytically controlled kinetics in semiconductor-based heterogeneous regimes. In the final place, some conventional analytical methods for validation of photocatalytic reaction mechanism are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bahnemann DW, Hilgendorff M, Memming R (1997) Charge carrier dynamics at TiO2 particles: reactivity of free and trapped holes. J Phys Chem B 101:4265–4275

    Article  CAS  Google Scholar 

  • Brežová V, Vrecková Z, Billik P et al (2009) Photoactivity of mechanochemically prepared nanoparticulate titanium dioxide investigated by EPR spectroscopy. J Photochem Photobiol A 206:177–187

    Article  Google Scholar 

  • Buechler KJ, Noble RD, Koval CA (1999) Investigation of the effects of controlled periodic illumination on the oxidation of gaseous trichloroethylene using a thin film of TiO2. Ind Eng Chem Res 38:892–896

    Article  CAS  Google Scholar 

  • Caliman AF, Cojocaru C, Antoniadis A (2007) Optimized photocatalytic degradation of Alcian Blue 8 GX in the presence of TiO2 suspensions. J Hazard Mater 144:265–273

    Article  CAS  Google Scholar 

  • Castellan GW (1983) Physical chemistry. Addison-Wesley Publishing Company, United States

    Google Scholar 

  • Chang C-H, Franses EI (1995) Adsorption dynamics of surfactants at the air/water interface: a critical review of mathematical models, data, and mechanisms. Colloids Surf A 100:1–45

    Article  CAS  Google Scholar 

  • Chen D, Li F, Ray AK (2000) Effect of mass transfer and catalyst layer thickness on photocatalytic reaction. ALCHE 46:1034–1045

    Article  CAS  Google Scholar 

  • Chen J-Q, Wang D, Zhu M-X et al (2007) Photocatalytic degradation of dimethoate using nanosized TiO2 powder. Desalination 207:87–94

    Article  CAS  Google Scholar 

  • Colombo DP Jr, Bowman RM (1996) Does interfacial charge transfer compete with charge carrier recombination? A femtosecond diffuse reflectance investigation of TiO2 nanoparticles. J Phys Chem 100:18445–18449

    Article  CAS  Google Scholar 

  • Dai K, Peng T, Chen H et al (2008) Photocatalytic degradation and mineralization of commercial methamidophos in aqueous titania suspension. Environ Sci Technol 42:1505–1510

    Article  CAS  Google Scholar 

  • Davydov L, Smirniotis PG (2000) Quantification of the primary processes in aqueous heterogeneous photocatalysis using single-stage oxidation reactions. J Catal 191:105–115

    Article  CAS  Google Scholar 

  • De Heredia JB, Torregrosa J, Dominguez JR (2001) Oxidation of p-hydroxybenzoic acid by UV radiation and by TiO2/UV radiation: comparison and modelling of reaction kinetic. J Hazard Mater 83:255–264

    Article  CAS  Google Scholar 

  • Demeestere K, De Visscher A, Dewulf J et al (2004) A new kinetic model for titanium dioxide mediated heterogeneous photocatalytic degradation of trichloroethylene in gas-phase. Appl Catal B 54:261–274

    Article  CAS  Google Scholar 

  • Dieckmann MS, Gray KA (1996) A comparison of the degradation of nitrophenol via direct and sensitised photocatalysis in TiO2 slurries. Water Res 30:1169–1183

    Article  CAS  Google Scholar 

  • Dijkstra MFJ, Michorius A, Buwalda H (2001) Comparison of the efficiency of immobilized and suspended systems in photocatalytic degradation. Catal Today 66:487–494

    Article  CAS  Google Scholar 

  • Du Y, Rabani J (2003) The measure of TiO2 photocatalytic efficiency and the comparison of different photocatalytic titania. J Phys Chem B 107:11970–11978

    Article  CAS  Google Scholar 

  • Dung NT, Khoa NV, Herrmann J-M (2005) Photocatalytic degradation of reactive dye RED-3BA in aqueous TiO2 suspension under UV-visible light. Int J Photoenergy 7:11–15

    Article  Google Scholar 

  • Engel T, Reid P (2006) Physical chemistry. Pearson Education, San Fransisco

    Google Scholar 

  • Fu H, Zhang L, Zhang S et al (2006) Electron spin resonance spin-trapping detection of radical intermediates in N-Doped TiO2-assisted photodegradation of 4-chlorophenol. J Phys Chem B 110:3061–3065

    Article  CAS  Google Scholar 

  • Gao R, Stark J, Bahnemann DW et al (2002) Quantum yields of hydroxyl radicals in illuminated TiO2 nanocrystallite layers. J Photochem Photobiol A 148:387–391

    Article  CAS  Google Scholar 

  • Gaya UI, Abdullah AH, Zainal Z et al (2009) Photocatalytic treatment of 4-chlorophenol in aqueous ZnO suspensions: intermediates, influence of dosage and inorganic anions. J Hazard Mater 168:57–63

    Article  CAS  Google Scholar 

  • Guettaï N, Amar HA (2005) Photocatalytic oxidation of methyl orange in presence of titanium dioxide in aqueous suspension. Part II: kinetics study. Desalination 185:439–448

    Article  Google Scholar 

  • Herrmann J-M (2010a) Fundamentals and misconceptions in photocatalysis. J Photochem Photobiol A 216:85–93

    Article  CAS  Google Scholar 

  • Herrmann J-M (2010b) Photocatalysis fundamentals revisited to avoid several misconceptions. Appl Catal B 99:461–468

    Article  CAS  Google Scholar 

  • Horváth IT (eds) (2003) Encyclopedia of catalysis, vol 5. J Wiley, New Jersey, pp 577–611

    Google Scholar 

  • Howe RF, Grätzel M (1985) EPR observation of trapped electrons in colloidal TiO2. J Phys Chem 89:4495–4499

    Article  CAS  Google Scholar 

  • Ikeda S, Sugiyama N, Pal B et al (2001) Photocatalytic activity of transition-metal-loaded titanium (IV) oxide powders suspended in aqueous solutions: Correlation with electron hole recombination kinetics. Phys Chem Chem Phys 3:267–273

    Article  CAS  Google Scholar 

  • Ishibashi K, Fujishima A, Watanabe T et al (2000) Quantum yields of active oxidative species formed on TiO2 photocatalyst. J Photochem Photobiol A 134:139–142

    Article  CAS  Google Scholar 

  • Jardim WF, Moraes SG, Takiyama MMK (1997) Photocatalytic degradation of aromatic chlorinated compounds using TiO2: toxicity of intermediates. Wat Res 31:1728–1732

    Article  CAS  Google Scholar 

  • Konstantinou IK, Albanis TA (2004) TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: a review. Appl Catal B 49:1–14

    Article  CAS  Google Scholar 

  • Lachheb H, Puzenat E, Houas A et al (2002) Photocatalytic degradation of various types of dyes (Alizarin S, Crocein Orange G, Methyl Red, Congo Red, Methylene Blue) in water by UV-irradiated titania. Appl Catal B 39:75–90

    Article  CAS  Google Scholar 

  • Lawless D, Serpone N, Meisel D (1991) Role of OH radicals and trapped holes in photocatalysis. A pulse radiolysis study. J Phys Chem 95:5166–5170

    Article  CAS  Google Scholar 

  • Lipczynska-Kochany E, Kochany J, Bolton JR (1991) Electron paramagnetic resonance spin trapping detection of short-lived radical intermediates in the direct photolysis of 4-chlorophenol in aerated aqueous solution. J Photochem Photobiol A 62:229–240

    Article  CAS  Google Scholar 

  • Mills A, Morris S, Davies R (1993) Photomineralisation of 4-chlorophenol sensitied by titanium dioxide: a study of intermediates. J Photochem Photobiol A 70:183–191

    Article  CAS  Google Scholar 

  • Mortimer RG (ed) (2008) Physical chemistry. Elsevier Academic Press, Canada

    Google Scholar 

  • Niessen WMA (2001) Current practice of gas chromatography-mass spectrometry. Marcel Decker, New York

    Google Scholar 

  • Ohtani B (2010) Photocatalysis A to Z—what we know and what we do not know in a scientific sense. J Photochem Photobiol C 11:157–178

    Article  CAS  Google Scholar 

  • Ollis DF (2005) Kinetic disguises in heterogeneous photocatalysis. Top Catal 35(3–4):217–223

    Article  CAS  Google Scholar 

  • Oudjehani K, Boule P (1992) Photoreactivity of 4-chlorophenol in aqueous solution. J Photochem Photobiol A 68:363–373

    Article  CAS  Google Scholar 

  • Priya MH, Madras G (2006) Kinetics of Photocatalytic degradation of chlorophenol, nitrophenol, and their mixtures. Ind Eng Chem Res 45:482–486

    Article  CAS  Google Scholar 

  • Robinson JW, Frame EMS, Frame IIGM (2005) Undergraduate instrumental analysis. Marcel Dekker, New York

    Google Scholar 

  • Schwarz PF, Turro NJ, Bossmann SH (1997) A new method to determine the generation of hydroxyl radicals in illuminated TiO2 suspensions. J Phys Chem B 101:7127–7134

    Article  CAS  Google Scholar 

  • Sirtori C, Zapata A, Malato S et al (2009) Solar photocatalytic treatment of quinolones: intermediates and toxicity evaluation. Photochem Photobiol Sci 8:644–651

    Article  CAS  Google Scholar 

  • Theurich J, Lindner M, Bahnemann DW (1996) Photocatalytic degradation of 4-chlorophenol in aerated aqueous titanium dioxide suspensions: a kinetic and mechanistic study. Langmuir 12:6368–6376

    Article  CAS  Google Scholar 

  • Valente JPS, Padilha PM, Florentino AO (2006) Studies on the adsorption and kinetics of photodegradation of a model compound for heterogeneous photocatalysis onto TiO2. Chemosphere 64:1128–1133

    Article  CAS  Google Scholar 

  • Wang Z, Ma W, Chen C et al (2011) Probing paramagnetic species in titania-based heterogeneous photocatalysis by electron spin resonance (ESR) spectroscopy—a mini review. Chem Eng J 170:353–362

    Article  CAS  Google Scholar 

  • Yang X, Tamai N (2001) How fast is interfacial hole transfer? In situ monitoring of carrier dynamics in anatase TiO2 nanoparticles by femtosecond laser spectroscopy. Phys Chem Chem Phys 3:3393–3398

    Article  CAS  Google Scholar 

  • Yu J, Chen J, Li C (2004) ESR Signal of superoxide radical anion adsorbed on TiO2 generated at room temperature. J Phys Chem B 108:2781–2783

    Article  CAS  Google Scholar 

  • Zhou S, Ray AK (2003) Kinetic studies for photocatalytic degradation of eosin B on a thin film of titanium dioxide. Ind Eng Chem Res 42:6020–6033

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Umar Ibrahim Gaya .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gaya, U. (2014). Mechanistic Principles of Photocatalytic Reaction. In: Heterogeneous Photocatalysis Using Inorganic Semiconductor Solids. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7775-0_3

Download citation

Publish with us

Policies and ethics