Skip to main content

Gamete/Embryo-Fetal Origins of Infertility

  • Chapter
  • First Online:
  • 966 Accesses

Abstract

Infertility is defined as the inability of a couple to conceive despite trying for 1 year. Genetically, infertility is considered a lethal factor, because the family lineage stops at that individual with no further offspring [1]. Traditionally, male infertile factors include azoospermia or oligozoospermia, and, abnormal sperm morphology or motility. Genetic pathogenesis may include Y chromosome microdeletions, chromosomal abnormalities, a single gene mutation, or, rearrangements of sperm mitochondrial DNA (mtDNA). Female infertile factors include congenital malformations, or, dysfunction of female reproductive system including abnormal folliculogenesis and sexual dysfunction. Accumulating data suggests that adverse exposures, or interventions, during the period of gametogenesis and embryo-fetal development may result in infertility [2–7]. Concerns about the effects of development on reproductive health are not new; previous studies in animal models and human epidemiological data indicate that early life events may initiate long term changes that increase the risk of diseases, such as the reproductive disorders [7–76].

Studies in animal models and basic research underscore the vulnerability of the reproductive system at different times of development and across the whole life-cycle. We review data implicating select developmental factors in compromising reproductive capacity in animals. We also review epidemiological and basic research in humans that suggests roles for developmental factors in reproductive dysfunction and infertility. Finally, we summarize the epigenetic modifications and currently-available countermeasures in prevention and treatment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hwang K, Yatsenko AN, Jorgez CJ, et al. Mendelian genetics of male infertility. Ann N Y Acad Sci. 2010;1214:E1–17.

    PubMed Central  PubMed  Google Scholar 

  2. Hardy DB. The developmental origins of health and disease: today’s perspectives and tomorrow’s challenges. PREFACE. Semin Reprod Med. 2011;29:171–2.

    PubMed  Google Scholar 

  3. Nicoletto SF, Rinaldi A. In the womb’s shadow the theory of prenatal programming as the fetal origin of various adult diseases is increasingly supported by a wealth of evidence. EMBO Rep. 2011;12:30–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Barker DJP. The origins of the developmental origins theory. J Intern Med. 2007;261:412–17.

    CAS  PubMed  Google Scholar 

  5. Langley-Evans SC, McMullen S. Developmental origins of adult disease. Med Princ Pract. 2010;19:87–98.

    PubMed  Google Scholar 

  6. Motrenko T. Embryo-fetal origin of diseases – new approach on epigenetic reprogramming. Arch Perinat Med. 2010;16:11–5.

    Google Scholar 

  7. Diaz-Garcia C, Estella C, Perales-Puchalt A, et al. Reproductive medicine and inheritance of infertility by offspring: the role of fetal programming. Fertil Steril. 2011;96:536–45.

    PubMed  Google Scholar 

  8. Guerrero-Bosagna CM, Skinner MK. Epigenetic transgenerational effects of endocrine disruptors on male reproduction. Semin Reprod Med. 2009;27:403–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Anway MD, Cupp AS, Uzumcu M, et al. Epigenetic transgenerational actions of endocrine disruptors and mate fertility. Science. 2005;308:1466–9.

    CAS  PubMed  Google Scholar 

  10. Anway MD, Leathers C, Skinner MK. Endocrine disruptor vinclozolin induced epigenetic transgenerational adult-onset disease. Endocrinology. 2006;147:5515–23.

    CAS  PubMed  Google Scholar 

  11. Guerrero-Bosagna C, Settles M, Lucker B, et al. Epigenetic transgenerational actions of vinclozolin on promoter regions of the sperm epigenome. PLoS ONE. 2010;5(9):e13100.

    PubMed Central  PubMed  Google Scholar 

  12. Manikkam M, Tracey R, Guerrero-Bosagna C, et al. Dioxin (TCDD) induces epigenetic transgenerational inheritance of adult onset disease and sperm epimutations. PLoS ONE. 2012;7(9):e46249.

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Anway MD, Memon MA, Uzumcu M, et al. Transgenerational effect of the endocrine disruptor vinclozolin on male spermatogenesis. J Androl. 2006;27:868–79.

    CAS  PubMed  Google Scholar 

  14. Salian S, Doshi T, Vanage G. Impairment in protein expression profile of testicular steroid receptor coregulators in male rat offspring perinatally exposed to Bisphenol A. Life Sci. 2009;85:11–8.

    CAS  PubMed  Google Scholar 

  15. Price TM, Murphy SK, Younglai EV. Perspectives: the possible influence of assisted reproductive technologies on transgenerational reproductive effects of environmental endocrine disruptors. Toxicol Sci. 2007;96:218–26.

    CAS  PubMed  Google Scholar 

  16. Bruner-Tran KL, Osteen KG. Developmental exposure to TCDD reduces fertility and negatively affects pregnancy outcomes across multiple generations. Reprod Toxicol. 2011;31:344–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Manikkam M, Guerrero-Bosagna C, Tracey R, et al. Transgenerational actions of environmental compounds on reproductive disease and identification of epigenetic biomarkers of ancestral exposures. PLoS ONE. 2012;7(2):e31901.

    CAS  PubMed Central  PubMed  Google Scholar 

  18. Nilsson EE, Anway MD, Stanfield J, et al. Transgenerational epigenetic effects of the endocrine disruptor vinclozolin on pregnancies and female adult onset disease. Reproduction. 2008;135:713–21.

    CAS  PubMed  Google Scholar 

  19. Nilsson E, Larsen G, Manikkam M, et al. Environmentally induced epigenetic transgenerational inheritance of ovarian disease. PLoS ONE. 2012;7(5):e36129.

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Amorim EMP, Damasceno DC, Perobelli JE, et al. Short- and long-term reproductive effects of prenatal and lactational growth restriction caused by maternal diabetes in male rats. Reprod Biol Endocrinol. 2011;9:154.

    PubMed Central  PubMed  Google Scholar 

  21. Guzman C, Cabrera R, Cardenas M, et al. Protein restriction during fetal and neonatal development in the rat alters reproductive function and accelerates reproductive ageing in female progeny. J Physiol. 2006;572:97–108.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Toledo FC, Perobelli JE, Pedrosa FPC, et al. In utero protein restriction causes growth delay and alters sperm parameters in adult male rats. Reprod Biol Endocrinol. 2011;9:94.

    PubMed Central  PubMed  Google Scholar 

  23. Padmanabhan V, Smith P, Veiga-Lopez A. Developmental programming: impact of prenatal testosterone treatment and postnatal obesity on ovarian follicular dynamics. J Dev Orig Health Dis. 2012;3:276–86.

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Steckler T, Wang JR, Bartol FF, et al. Fetal programming: prenatal testosterone treatment causes intrauterine growth retardation, reduces ovarian reserve and increases ovarian follicular recruitment. Endocrinology. 2005;146:3185–93.

    CAS  PubMed  Google Scholar 

  25. Birch RA, Padmanabhan V, Foster DL, et al. Prenatal programming of reproductive neuroendocrine function: fetal androgen exposure produces progressive disruption of reproductive cycles in sheep. Endocrinology. 2003;144:1426–34.

    CAS  PubMed  Google Scholar 

  26. Forsdike RA, Hardy K, Bull L, et al. Disordered follicle development in ovaries of prenatally androgenized ewes. J Endocrinol. 2007;192:421–8.

    CAS  PubMed  Google Scholar 

  27. Veiga-Lopez A, Steckler TL, Abbott DH, et al. Developmental programming: impact of excess prenatal testosterone on intrauterine fetal endocrine milieu and growth in sheep. Biol Reprod. 2011;84:87–96.

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Abbott DH, Tarantal AF, Dumesic DA. Fetal, infant, adolescent and adult phenotypes of polycystic ovary syndrome in prenatally androgenized female rhesus monkeys. Am J Primatol. 2009;71:776–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Padmanabhan V, Veiga-Lopez A. Developmental origin of reproductive and metabolic dysfunctions: androgenic versus estrogenic reprogramming. Semin Reprod Med. 2011;29:173–86.

    PubMed Central  PubMed  Google Scholar 

  30. Luense LJ, Veiga-Lopez A, Padmanabhan V, et al. Developmental programming: gestational testosterone treatment alters fetal ovarian gene expression. Endocrinology. 2011;152:4974–83.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Abbott DH, Padmanabhan V, Dumesic DA. Contributions of androgen and estrogen to fetal programming of ovarian dysfunction. Reprod Biol Endocrinol. 2006;4:17.

    PubMed Central  PubMed  Google Scholar 

  32. Veiga-Lopez A, Ye W, Padmanabhan V. Developmental programming: prenatal testosterone excess disrupts anti-Mullerian hormone expression in preantral and antral follicles. Fertil Steril. 2012;97:748–56.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Franks S. Animal models and the developmental origins of polycystic ovary syndrome: increasing evidence for the role of androgens in programming reproductive and metabolic dysfunction. Endocrinology. 2012;153:2536–8.

    CAS  PubMed  Google Scholar 

  34. Tyndall V, Broyde M, Sharpe R, et al. Effect of androgen treatment during foetal and/or neonatal life on ovarian function in prepubertal and adult rats. Reproduction. 2012;143:21–33.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Xita N, Tsatsoulis A. Review: Fetal programming of polycystic ovary syndrome by androgen excess: evidence from experimental, clinical, and genetic association studies. J Clin Endocrinol Metab. 2006;91:1660–6.

    CAS  PubMed  Google Scholar 

  36. Baird DT, Cnattingius S, Collins J, et al. Nutrition and reproduction in women. Hum Reprod Update. 2006;12:193–207.

    Google Scholar 

  37. Gatti JM, Kirsch AJ, Troyer WA, et al. Increased incidence of hypospadias in small-for-gestational age infants in a neonatal intensive-care unit. BJU Int. 2001;87:548–50.

    CAS  PubMed  Google Scholar 

  38. Cicognani A, Alessandroni R, Pasini A, et al. Low birth weight for gestational age and subsequent male gonadal function. J Pediatr. 2002;141:376–80.

    PubMed  Google Scholar 

  39. Main KM, Jensen RB, Asklund C, et al. Low birth weight and male reproductive function. Horm Res. 2006;65:116–22.

    CAS  PubMed  Google Scholar 

  40. Fujimoto T, Suwa T, Kabe K, et al. Placental insufficiency in early gestation is associated, with hypospadias. J Pediatr Surg. 2008;43:358–61.

    PubMed  Google Scholar 

  41. Ibanez L, Valls C, Cols M, et al. Hypersecretion of FSH in infant boys and girls born small for gestational age. J Clin Endocrinol Metab. 2002;87:1986–8.

    CAS  PubMed  Google Scholar 

  42. Sir-Petermann T, Hitchsfeld C, Codner E, et al. Gonadal function in low birth weight infants: a pilot study. J Pediatr Endocrinol Metab. 2007;20:405–14.

    CAS  PubMed  Google Scholar 

  43. Ibanez L, Jaramillo A, Enriquez G, et al. Polycystic ovaries after precocious pubarche: relation to prenatal growth. Hum Reprod. 2007;22:395–400.

    CAS  PubMed  Google Scholar 

  44. van Weissenbruch MM. Premature adrenarche, polycystic ovary syndrome and intrauterine growth retardation: does a relationship exist? Curr Opin Endocrinol Diabetes Obes. 2007;14:35–40.

    PubMed  Google Scholar 

  45. Ibanez L, Potau N, de Zegher F. Ovarian hyporesponsiveness to follicle stimulating hormone in adolescent girls born small for gestational age. J Clin Endocrinol Metab. 2000;85:2624–6.

    CAS  PubMed  Google Scholar 

  46. Ibanez L, Potau N, Enriquez G, et al. Reduced uterine and ovarian size in adolescent girls born small for gestational age. Pediatr Res. 2000;47:575–7.

    CAS  PubMed  Google Scholar 

  47. Ibanez L, Potau N, Ferrer A, et al. Anovulation in eumenorrheic, nonobese adolescent girls born small for gestational age: insulin sensitization induces ovulation, increases lean body mass, and reduces abdominal fat excess, dyslipidemia, and subclinical hyperandrogenism. J Clin Endocrinol Metab. 2002;87:5702–5.

    CAS  PubMed  Google Scholar 

  48. Ibanez L, Potau N, Ferrer A, et al. Reduced ovulation rate in adolescent girls born small for gestational age. J Clin Endocrinol Metab. 2002;87:3391–3.

    CAS  PubMed  Google Scholar 

  49. Ibanez L, Potau N, Enriquez G, et al. Hypergonadotrophinaemia with reduced uterine and ovarian size in women born small-for-gestational-age. Hum Reprod. 2003;18:1565–9.

    PubMed  Google Scholar 

  50. Adair LS. Size at birth predicts age at menarche. Pediatrics. 2001;107(4):E59.

    CAS  PubMed  Google Scholar 

  51. Koziel S, Jankowska EA. Effect of low versus normal birthweight on menarche in 14-year-old Polish girls. J Paediatr Child Health. 2002;38:268–71.

    CAS  PubMed  Google Scholar 

  52. Romundstad PR, Vatten LJ, Nilsen TIL, et al. Birth size in relation to age at menarche and adolescent body size: implications for breast cancer risk. Int J Cancer. 2003;105:400–3.

    CAS  PubMed  Google Scholar 

  53. Ibanez L, Jimenez R, de Zegher F. Early puberty-menarche after precocious pubarche: relation to prenatal growth. Pediatrics. 2006;117:117–21.

    PubMed  Google Scholar 

  54. Tam CS, de Zegher F, Garnett SP, et al. Opposing influences of prenatal and postnatal growth on the timing of menarche. J Clin Endocrinol Metab. 2006;91:4369–73.

    CAS  PubMed  Google Scholar 

  55. Jasienska G, Thune I, Ellison PT. Fatness at birth predicts adult susceptibility to ovarian suppression: an empirical test of the Predictive Adaptive Response hypothesis. Proc Natl Acad Sci U S A. 2006;103:12759–62.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Hoover RN, Hyer M, Pfeiffer RM, et al. Adverse health outcomes in women exposed in utero to diethylstilbestrol. N Engl J Med. 2011;365:1304–14.

    CAS  PubMed  Google Scholar 

  57. Green DM, Kawashima T, Stovall M, et al. Fertility of male survivors of childhood cancer: a report from the Childhood Cancer Survivor Study. J Clin Oncol. 2010;28:332–9.

    PubMed Central  PubMed  Google Scholar 

  58. Wallace WHB. Oncofertility and preservation of reproductive capacity in children and young adults. Cancer. 2011;117:2301–10.

    PubMed  Google Scholar 

  59. Green DM, Kawashima T, Stovall M, et al. Fertility of female survivors of childhood cancer: a report from the Childhood Cancer Survivor Study. J Clin Oncol. 2009;27:2677–85.

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Green DM, Sklar CA, Boice JD, et al. Ovarian failure and reproductive outcomes after childhood cancer treatment: results from the Childhood Cancer Survivor Study. J Clin Oncol. 2009;27:2374–81.

    PubMed Central  PubMed  Google Scholar 

  61. Ginsberg JP. The effect of cancer therapy on fertility, the assessment of fertility and fertility preservation options for pediatric patients. Eur J Pediatr. 2011;170:703–8.

    PubMed  Google Scholar 

  62. Blumenfeld Z. Chemotherapy and fertility. Best Pract Res Clin Obstet Gynaecol. 2012;26:379–90.

    PubMed  Google Scholar 

  63. Fleischer RT, Vollenhoven BJ, Weston GC. The effects of chemotherapy and radiotherapy on fertility in premenopausal women. Obstet Gynecol Surv. 2011;66:248–54.

    PubMed  Google Scholar 

  64. Meirow D, Nugent D. The effects of radiotherapy and chemotherapy on female reproduction. Hum Reprod Update. 2001;7:535–43.

    CAS  PubMed  Google Scholar 

  65. Sklar CA, Mertens AC, Mitby P, et al. Premature menopause in survivors of childhood cancer: a report from the childhood cancer survivor study. J Natl Cancer Inst. 2006;98:890–6.

    PubMed  Google Scholar 

  66. Thomas-Teinturier C, El Fayech C, Oberlin O, et al. Age at menopause and its influencing factors in a cohort of survivors of childhood cancer: earlier but rarely premature. Hum Reprod. 2013;28:488–95.

    PubMed  Google Scholar 

  67. Gnaneswaran S, Deans R, Cohn RJ. Reproductive late effects in female survivors of childhood cancer. Obstet Gynecol Int. 2012;2012:564794.

    PubMed Central  PubMed  Google Scholar 

  68. Hamre H, Kiserud CE, Ruud E, et al. Gonadal function and parenthood 20 years after treatment for childhood lymphoma: a cross-sectional study. Pediatr Blood Cancer. 2012;59:271–7.

    PubMed  Google Scholar 

  69. van Dorp W, van Beek RD, Laven JSE, et al. Long-term endocrine side effects of childhood Hodgkin’s lymphoma treatment: a review. Hum Reprod Update. 2012;18:12–28.

    PubMed  Google Scholar 

  70. Hudson MM. Reproductive outcomes for survivors of childhood cancer. Obstet Gynecol. 2010;116:1171–83.

    PubMed  Google Scholar 

  71. Sudour H, Chastagner P, Claude L, et al. Fertility and pregnancy outcome after abdominal irradiation that included or excluded the pelvis in childhood tumor survivors. Int J Radiat Oncol Biol Phys. 2010;76:867–73.

    PubMed  Google Scholar 

  72. Rendtorff R, Hohmann C, Reinmuth S, et al. Hormone and sperm analyses after chemo- and radiotherapy in childhood and adolescence. Klin Padiatr. 2010;222:145–9.

    CAS  PubMed  Google Scholar 

  73. Kai CM, Juul A, McElreavey K, et al. Sons conceived by assisted reproduction techniques inherit deletions in the azoospermia factor (AZF) region of the Y chromosome and the DAZ gene copy number. Hum Reprod. 2008;23:1669–78.

    Google Scholar 

  74. Kai CM, Main KM, Andersen AN, et al. Reduced serum testosterone levels in infant boys conceived by intracytoplasmic sperm injection. J Clin Endocrinol Metab. 2007;92:2598–603.

    CAS  Google Scholar 

  75. Kobayashi H, Hiura H, John RM, et al. DNA methylation errors at imprinted loci after assisted conception originate in the parental sperm. Eur J Hum Genet. 2009;17:1582–91.

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Feng C, Wang LQ, Dong MY, et al. Assisted reproductive technology may increase clinical mutation detection in male offspring. Fertil Steril. 2008;90:92–6.

    CAS  PubMed  Google Scholar 

  77. Lumey LH, Stein AD, Ravelli AC. Timing of prenatal starvation in women and birth weight in their first and second born offspring: the Dutch Famine Birth Cohort study. Eur J Obstet Gynecol Reprod Biol. 1995;61:23–30.

    CAS  PubMed  Google Scholar 

  78. Lumey LH, Stein AD, Ravelli ACJ. Timing of prenatal starvation in women and offspring birth weight: an update. Eur J Obstet Gynecol Reprod Biol. 1995;63:197.

    CAS  PubMed  Google Scholar 

  79. Ding GL, Wang FF, Shu J, et al. Transgenerational glucose intolerance with Igf2/H19 epigenetic alterations in mouse islet induced by intrauterine hyperglycemia. Diabetes. 2012;61:1133–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Bygren LO, Edvinsson S, Brostrom G. Change in food availability during pregnancy: is it related to adult sudden death from cerebro- and cardiovascular disease in offspring? Am J Hum Biol. 2000;12:447–53.

    PubMed  Google Scholar 

  81. Kanaka-Gantenbein C. Fetal origins of adult diabetes. Ann N Y Acad Sci. 2010;1205:99–105.

    PubMed  Google Scholar 

  82. Dessi A, Ottonello G, Fanos V. Physiopathology of intrauterine growth retardation: from classic data to metabolomics. J Matern Fetal Neonatal Med. 2012;25:13–8.

    CAS  PubMed  Google Scholar 

  83. Yuan QX, Chen L, Liu CP, et al. Postnatal pancreatic islet beta cell function and insulin sensitivity at different stages of lifetime in rats born with intrauterine growth retardation. PLoS ONE. 2011;6(10):e25167.

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Chmurzynska A. Fetal programming: link between early nutrition, DNA methylation, and complex diseases. Nutr Rev. 2010;68:87–98.

    PubMed  Google Scholar 

  85. Aagaard-Tillery KM, Grove K, Bishop J, et al. Developmental origins of disease and determinants of chromatin structure: maternal diet modifies the primate fetal epigenome. J Mol Endocrinol. 2008;41:91–102.

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Waterland RA, Travisano M, Tahiliani KG, et al. Methyl donor supplementation prevents transgenerational amplification of obesity. Int J Obes. 2008;32:1373–9.

    CAS  Google Scholar 

  87. Pembrey ME, Bygren LO, Kaati G, et al. Sex-specific, male-line transgenerational responses in humans. Eur J Hum Genet. 2006;14:159–66.

    PubMed  Google Scholar 

  88. Kaati G, Bygren LO, Pembrey M, et al. Transgenerational response to nutrition, early life circumstances and longevity. Eur J Hum Genet. 2007;15:784–90.

    CAS  PubMed  Google Scholar 

  89. Drake AJ, Walker BR. The intergenerational effects of fetal programming: non-genomic mechanisms for the inheritance of low birth weight and cardiovascular risk. J Endocrinol. 2004;180:1–16.

    CAS  PubMed  Google Scholar 

  90. Hall JG. Review and hypothesis: syndromes with severe intrauterine growth restriction and very short stature – are they related to the epigenetic mechanism(s) of fetal survival involved in the developmental origins of adult health and disease? Am J Med Genet A. 2010;152A:512–27.

    PubMed  Google Scholar 

  91. French NP, Hagan R, Evans SF, et al. Repeated antenatal corticosteroids: effects on cerebral palsy and childhood behavior. Am J Obstet Gynecol. 2004;190:588–95.

    CAS  PubMed  Google Scholar 

  92. Martinez-Frias ML. The thalidomide experience: review of its effects 50 years later. Med Clin. 2012;139:25–32.

    Google Scholar 

  93. Thompson JG, Mitchell M, Kind KL. Embryo culture and long-term consequences. Reprod Fertil Dev. 2007;19:43–52.

    PubMed  Google Scholar 

  94. Sakka SD, Malamitsi-Puchner A, Loutradis D, et al. Euthyroid hyperthyrotropinemia in children born after in vitro fertilization. J Clin Endocrinol Metab. 2009;94:1338–41.

    CAS  PubMed  Google Scholar 

  95. Sakka SD, Loutradis D, Kanaka-Gantenbein C, et al. Absence of insulin resistance and low-grade inflammation despite early metabolic syndrome manifestations in children born after in vitro fertilization. Fertil Steril. 2010;94:1693–9.

    CAS  PubMed  Google Scholar 

  96. Ceelen M, van Weissenbruch MM, Roos JC, et al. Body composition in children and adolescents born after in vitro fertilization or spontaneous conception. J Clin Endocrinol Metab. 2007;92:3417–23.

    CAS  PubMed  Google Scholar 

  97. Ceelen M, van Weissenbruch MM, Vermeiden JPW, et al. Cardiometabolic differences in children born after in vitro fertilization: follow-up study. J Clin Endocrinol Metab. 2008;93:1682–8.

    CAS  PubMed  Google Scholar 

  98. Bukulmez O. Does assisted reproductive technology cause birth defects? Curr Opin Obstet Gynecol. 2009;21:260–4.

    PubMed  Google Scholar 

  99. Farhi J, Fisch B. Risk of major congenital malformations associated with infertility and its treatment by extent of iatrogenic intervention. Pediatr Endocrinol Rev. 2007;4:352–7.

    PubMed  Google Scholar 

  100. Davies MJ, Moore VM, Willson KJ, et al. Reproductive technologies and the risk of birth defects. N Engl J Med. 2012;366:1803–13.

    CAS  PubMed  Google Scholar 

  101. Grace KS, Sinclair KD. Assisted reproductive technology, epigenetics, and long-term health: a developmental time bomb still ticking. Semin Reprod Med. 2009;27:409–16.

    CAS  PubMed  Google Scholar 

  102. Hansen M, Bower C, Milne E, et al. Assisted reproductive technologies and the risk of birth defects – a systematic review. Hum Reprod. 2005;20:328–38.

    PubMed  Google Scholar 

  103. Halliday JL, Ukoumunne OC, Baker HWG, et al. Increased risk of blastogenesis birth defects, arising in the first 4 weeks of pregnancy, after assisted reproductive technologies. Hum Reprod. 2010;25:59–65.

    PubMed  Google Scholar 

  104. Schieve LA, Rasmussen SA, Reefhuis J. Risk of birth defects among children conceived with assisted reproductive technology: providing an epidemiologic context to the data. Fertil Steril. 2005;84:1320–4.

    PubMed  Google Scholar 

  105. Kanaka-Gantenbein C, Sakka S, Chrousos GP. Assisted reproduction and its neuroendocrine impact on the offspring. Prog Brain Res. 2010;182:161–74.

    CAS  PubMed  Google Scholar 

  106. Odom LN, Segars J. Imprinting disorders and assisted reproductive technology. Curr Opin Endocrinol Diabetes Obes. 2010;17:517–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Manipalviratn S, DeCherney A, Segars J. Imprinting disorders and assisted reproductive technology. Fertil Steril. 2009;91:305–15.

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Bowdin S, Allen C, Kirby G, et al. A survey of assisted reproductive technology births and imprinting disorders. Hum Reprod. 2007;22:3237–40.

    PubMed  Google Scholar 

  109. Gosden R, Trasler J, Lucifero D, et al. Rare congenital disorders, imprinted genes, and assisted reproductive technology. Lancet. 2003;361:1975–7.

    PubMed  Google Scholar 

  110. Yoon G, Beischel LS, Johnson JP, et al. Dizygotic twin pregnancy conceived with assisted reproductive technology associated with chromosomal anomaly, imprinting disorder, and monochorionic placentation. J Pediatr. 2005;146:565–7.

    PubMed  Google Scholar 

  111. Halliday J, Oke K, Breheny S, et al. Beckwith-Wiedemann syndrome and IVF: a case–control study. Am J Hum Genet. 2004;75:526–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Xn D, Wu Y, Liu F, et al. A hypothalamic-pituitary-adrenal axis-associated neuroendocrine metabolic programmed alteration in offspring rats of IUGR induced by prenatal caffeine ingestion. Toxicol Appl Pharmacol. 2012;264:395–403.

    Google Scholar 

  113. Rueda-Clausen CF, Morton JS, Lopaschuk GD, et al. Long-term effects of intrauterine growth restriction on cardiac metabolism and susceptibility to ischaemia/reperfusion. Cardiovasc Res. 2011;90:285–94.

    CAS  PubMed  Google Scholar 

  114. Rueda-Clausen CF, Morton JS, Davidge ST. The early origins of cardiovascular health and disease: who, when, and how. Semin Reprod Med. 2011;29:197–210.

    PubMed  Google Scholar 

  115. Rueda-Clausen CF, Morton JS, Oudit GY, et al. Effects of hypoxia-induced intrauterine growth restriction on cardiac siderosis and oxidative stress. J Dev Orig Health Dis. 2012;3:350–7.

    CAS  PubMed  Google Scholar 

  116. Rueda-Clausen CF, Dolinsky VW, Morton JS, et al. Hypoxia-induced intrauterine growth restriction increases the susceptibility of rats to high-fat diet-induced metabolic syndrome. Diabetes. 2011;60:507–16.

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Rueda-Clausen CF, Morton JS, Davidge ST. Effects of hypoxia-induced intrauterine growth restriction on cardiopulmonary structure and function during adulthood. Cardiovasc Res. 2009;81:713–22.

    CAS  PubMed  Google Scholar 

  118. Wojtyla A, Kapka-Skrzypczak L, Diatczyk J, et al. Alcohol-related developmental origin of adult health – population studies in Poland among mothers and newborns (2010–2012). Ann Agric Environ Med. 2012;19:365–77.

    PubMed  Google Scholar 

  119. Mestan KK, Steinhorn RH. Fetal origins of neonatal lung disease: understanding the pathogenesis of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol. 2011;301:L858–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Fauser B, Tarlatzis BC, Rebar RW, et al. Consensus on women’s health aspects of polycystic ovary syndrome (PCOS): the Amsterdam ESHRE/ASRM-Sponsored 3rd PCOS Consensus Workshop Group. Fertil Steril. 2012;97:28-U84.

    Google Scholar 

  121. Baird DT, Balen A, Escobar-Morreale HF, et al. Health and fertility in World Health Organization group 2 anovulatory women. Hum Reprod Update. 2012;18:586–99.

    Google Scholar 

  122. Group TEA-SPCW. Consensus on infertility treatment related to polycystic ovary syndrome. Fertil Steril. 2008;89:505–22.

    Google Scholar 

  123. Jin M, Yu YQ, Huang HF. An update on primary ovarian insufficiency. Sci China Life Sci. 2012;55:677–86.

    CAS  PubMed  Google Scholar 

  124. Welt CK. Primary ovarian insufficiency: a more accurate term for premature ovarian failure. Clin Endocrinol. 2008;68:499–509.

    Google Scholar 

  125. Xu N, Kwon S, Abbott DH, et al. Epigenetic mechanism underlying the development of polycystic ovary syndrome (PCOS)-like phenotypes in prenatally androgenized rhesus monkeys. PLoS ONE. 2011;6(11):e27286.

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Dumesic DA, Abbott DH, Padmanabhan V. Polycystic ovary syndrome and its developmental origins. Rev Endocr Metab Disord. 2007;8:127–41.

    PubMed Central  PubMed  Google Scholar 

  127. Li ZX, Huang HF. Epigenetic abnormality: a possible mechanism underlying the fetal origin of polycystic ovary syndrome. Med Hypotheses. 2008;70:638–42.

    PubMed  Google Scholar 

  128. de Zegher F, Ibáñez L. Early origins of polycystic ovary syndrome: hypotheses may change without notice. J Clin Endocrinol Metab. 2009;94:3682–5.

    PubMed  Google Scholar 

  129. Abbott DH, Dumesic DA, Franks S. Developmental origin of polycystic ovary syndrome – a hypothesis. J Endocrinol. 2002;174:1–5.

    CAS  PubMed  Google Scholar 

  130. Jaddoe VWV. Developmental origins of type 2 diabetes and obesity. Acta Paediatr. 2009;98:29.

    Google Scholar 

  131. Barker DJP, Hales CN, Fall CHD, et al. Type 2 (non-insulin-dependent) diabetes-mellitus, hypertension and hyperlipemia (syndrome-x) – relation to reduced fetal growth. Diabetologia. 1993;36:62–7.

    CAS  PubMed  Google Scholar 

  132. Alves MG, Martins AD, Rato L, et al. Molecular mechanisms beyond glucose transport in diabetes-related male infertility. Biochim Biophys Acta. 1832;2013:626–35.

    Google Scholar 

  133. Mallidis C, Agbaje I, McClure N, et al. The influence of diabetes mellitus on male reproductive function. A poorly investigated aspect of male infertility. Urologe. 2011;50:33–7.

    CAS  PubMed  Google Scholar 

  134. Batcheller A, Cardozo E, Maguire M, et al. Are there subtle genome-wide epigenetic alterations in normal offspring conceived by assisted reproductive technologies? Fertil Steril. 2011;96:1306–11.

    PubMed Central  PubMed  Google Scholar 

  135. Serour GI, Re FCEAH. Ethical guidelines on iatrogenic and self-induced infertility. Int J Gynaecol Obstet. 2006;94:172–3.

    Google Scholar 

  136. Zhang D, Zhu YM, Gao HJ, et al. Overweight and obesity negatively affect the outcomes of ovarian stimulation and in vitro fertilisation: a cohort study of 2628 Chinese women. Gynecol Endocrinol. 2010;26:325–32.

    PubMed  Google Scholar 

  137. Du Plessis SS, Cabler S, McAlister DA, et al. The effect of obesity on sperm disorders and male infertility. Nat Rev Urol. 2010;7:153–61.

    PubMed  Google Scholar 

  138. deMola J. Obesity and its relationship to infertility in men and women. Obstet Gynecol Clin North Am. 2009;36:333+.

    Google Scholar 

  139. Lumey LH, Stein AD. In utero exposure to famine and subsequent fertility: the Dutch Famine Birth Cohort Study. Am J Public Health. 1997;87:1962–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Meas T, Deghmoun S, Levy-Marchal C, et al. Fertility is not altered in young adults born small for gestational age. Hum Reprod. 2010;25:2354–9.

    CAS  PubMed  Google Scholar 

  141. Sadrzadeh-Broer S, Kuijper EAM, Van Weissenbruch MM, et al. Ovarian reserve in young women with low birth weight and normal puberty: a pilot case–control study. Gynecol Endocrinol. 2011;27:641–4.

    PubMed  Google Scholar 

  142. Luo XQ, Mo Y, Ke ZY, et al. High-dose chemotherapy without stem cell transplantation for refractory childhood systemic lupus erythematosus. Chemotherapy. 2008;54:331–5.

    CAS  PubMed  Google Scholar 

  143. Mok CC, Lau CS, Wong RWS. Risk factors for ovarian failure in patients with systemic lupus erythematosus receiving cyclophosphamide therapy. Arthritis Rheum. 1998;41:831–7.

    CAS  PubMed  Google Scholar 

  144. Shalet SM, Tsatsoulis A, Whitehead E, et al. Vulnerability of the human Leydig-cell to radiation-damage is dependent upon age. J Endocrinol. 1989;120:161–5.

    CAS  PubMed  Google Scholar 

  145. Meistrich ML, Finch M, Dacunha MF, et al. Damaging effects of 14 chemotherapeutic drugs on mouse testis cells. Cancer Res. 1982;42:122–31.

    CAS  PubMed  Google Scholar 

  146. Kangasniemi M, Huhtaniemi I, Meistrich ML. Failure of spermatogenesis to recover despite the presence of a spermatogonia in the irradiated LBNF(1), rat. Biol Reprod. 1996;54:1200–8.

    CAS  PubMed  Google Scholar 

  147. Tyrkus MY, Makukh GV, Zastavna DV, et al. Microdeletions in the Y chromosome as a predictive marker of infertility in males. Cytol Genet. 2008;42:111–15.

    Google Scholar 

  148. Houshdaran S, Cortessis VK, Siegmund K, et al. Widespread epigenetic abnormalities suggest a broad DNA methylation erasure defect in abnormal human sperm. PLoS ONE. 2007;2:e1289.

    PubMed Central  PubMed  Google Scholar 

  149. Marques CJ, Francisco T, Sousa S, et al. Methylation defects of imprinted genes in human testicular spermatozoa. Fertil Steril. 2010;94:585–94.

    CAS  PubMed  Google Scholar 

  150. Sato A, Otsu E, Negishi H, et al. Aberrant DNA methylation of imprinted loci in superovulated oocytes. Hum Reprod. 2007;22:26–35.

    CAS  PubMed  Google Scholar 

  151. Borghol N, Lornage J, Blachere T, et al. Epigenetic status of the H19 locus in human oocytes following in vitro maturation. Genomics. 2006;87:417–26.

    CAS  PubMed  Google Scholar 

  152. Jones GM, Cram DS, Song B, et al. Gene expression profiling of human oocytes following in vivo or in vitro maturation. Hum Reprod. 2008;23:1138–44.

    CAS  PubMed  Google Scholar 

  153. Katari S, Turan N, Bibikova M, et al. DNA methylation and gene expression differences in children conceived in vitro or in vivo. Hum Mol Genet. 2009;18:3769–78.

    CAS  PubMed Central  PubMed  Google Scholar 

  154. Turan N, Katari S, Gerson LF, et al. Inter- and intra-individual variation in allele-specific DNA methylation and gene expression in children conceived using assisted reproductive technology. PLoS Genet. 2010;6(7):e1001033.

    PubMed Central  PubMed  Google Scholar 

  155. Zechner U, Pliushch G, Schneider E, et al. Quantitative methylation analysis of developmentally important genes in human pregnancy losses after ART and spontaneous conception. Mol Hum Reprod. 2010;16:704–13.

    CAS  PubMed  Google Scholar 

  156. Gomes MV, Huber J, Ferriani RA, et al. Abnormal methylation at the KvDMR1 imprinting control region in clinically normal children conceived by assisted reproductive technologies. Mol Hum Reprod. 2009;15:471–7.

    CAS  PubMed  Google Scholar 

  157. Thompson JG, Kind KL, Roberts CT, et al. Epigenetic risks related to assisted reproductive technologies – short- and long-term consequences for the health of children conceived through assisted reproduction technology: more reason for caution? Hum Reprod. 2002;17:2783–6.

    CAS  PubMed  Google Scholar 

  158. Wang N, Wang LY, Le F, et al. Altered expression of Armet and Mrlp51 in the oocyte, preimplantation embryo, and brain of mice following oocyte in vitro maturation but postnatal brain development and cognitive function are normal. Reproduction. 2011;142:401–8.

    CAS  PubMed  Google Scholar 

  159. Wang N, Le F, Liu XZ, et al. Altered expressions and DNA methylation of imprinted genes in chromosome 7 in brain of mouse offspring conceived from in vitro maturation. Reprod Toxicol. 2012;34:420–8.

    CAS  PubMed  Google Scholar 

  160. Li L, Wang L, Xu XR, et al. Genome-wide DNA methylation patterns in IVF-conceived mice and their progeny: a putative model for ART-conceived humans. Reprod Toxicol. 2011;32:98–105.

    PubMed  Google Scholar 

  161. Demars J, Le Bouc Y, El-Osta A, et al. Epigenetic and genetic mechanisms of abnormal 11p15 genomic imprinting in Silver-Russell and Beckwith-Wiedemann Syndromes. Curr Med Chem. 2011;18:1740–50.

    CAS  PubMed  Google Scholar 

  162. Fauque P, Jouannet P, Lesaffre C, et al. Assisted reproductive technology affects developmental kinetics, H19 imprinting control region methylation and H19 gene expression in individual mouse. BMC Dev Biol. 2007;7:116.

    PubMed Central  PubMed  Google Scholar 

  163. Fortier AL, Lopes FL, Darricarrere N, et al. Superovulation alters the expression of imprinted genes in the midgestation mouse placenta. Hum Mol Genet. 2008;17:1653–65.

    CAS  PubMed  Google Scholar 

  164. Rivera RM, Stein P, Weaver JR, et al. Manipulations of mouse embryos prior to implantation result in aberrant expression of imprinted genes on day 9.5 of development. Hum Mol Genet. 2008;17:1–14.

    CAS  PubMed  Google Scholar 

  165. Doherty AS, Mann MRW, Tremblay KD, et al. Differential effects of culture on imprinted H19 expression in the preimplantation mouse embryo. Biol Reprod. 2000;62:1526–35.

    CAS  PubMed  Google Scholar 

  166. Wang ZY, Xu L, He FF. Embryo vitrification affects the methylation of the H19/Igf2 differentially methylated domain and the expression of H19 and Igf2. Fertil Steril. 2010;93:2729–33.

    CAS  PubMed  Google Scholar 

  167. Li T, Vu TH, Ulaner GA, et al. IVF results in de novo DNA methylation and histone methylation at an Igf2-H19 imprinting epigenetic switch. Mol Hum Reprod. 2005;11:631–40.

    CAS  PubMed  Google Scholar 

  168. Zaitseva I, Zaitsev S, Alenina N, et al. Dynamics of DNA-demethylation in early mouse and rat embryos developed in vivo and in vitro. Mol Reprod Dev. 2007;74:1255–61.

    CAS  PubMed  Google Scholar 

  169. Khosla S, Dean W, Brown D, et al. Culture of preimplantation mouse embryos affects fetal development and the expression of imprinted genes. Biol Reprod. 2001;64:918–26.

    CAS  PubMed  Google Scholar 

  170. Mann MRW, Lee SS, Doherty AS, et al. Selective loss of imprinting in the placenta following preimplantation development in culture. Development. 2004;131:3727–35.

    CAS  PubMed  Google Scholar 

  171. Lewis A, Mitsuya K, Umlauf D, et al. Imprinting on distal chromosome 7 in the placenta involves repressive histone methylation independent of DNA methylation. Nat Genet. 2004;36:1291–5.

    CAS  PubMed  Google Scholar 

  172. Stouder C, Deutsch S, Paoloni-Giacobino A. Superovulation in mice alters the methylation pattern of imprinted genes in the sperm of the offspring. Reprod Toxicol. 2009;28:536–41.

    CAS  PubMed  Google Scholar 

  173. Mahsoudi B, Li A, O’Neill C. Assessment of the long-term and transgenerational consequences of perturbing preimplantation embryo development in mice. Biol Reprod. 2007;77:889–96.

    CAS  PubMed  Google Scholar 

  174. Zhang Y, Zhang YL, Feng C, et al. Comparative proteomic analysis of human placenta derived from assisted reproductive technology. Proteomics. 2008;8:4344–56.

    CAS  PubMed  Google Scholar 

  175. Kuentz P, Bailly A, Faure AC, et al. Child with Beckwith-Wiedemann syndrome born after assisted reproductive techniques to an human immunodeficiency virus serodiscordant couple. Fertil Steril. 2011;96:E35–8.

    PubMed  Google Scholar 

  176. Shi X, Chen S, Zheng H, et al. Aberrant DNA methylation of imprinted loci in human in vitro matured oocytes after long agonist stimulation. Eur J Obstet Gynecol Reprod Biol. 2012;167(1):64–8.

    PubMed  Google Scholar 

  177. Katagiri Y, Aoki C, Tamaki-Ishihara Y et al. Effects of assisted reproduction technology on placental imprinted gene expression. Obstet Gynecol Int 2010;2010. pii:437528

    Google Scholar 

  178. Kallen B, Finnstrom O, Nygren KG, et al. In vitro fertilization (IVF) in Sweden: risk for congenital malformations after different IVF methods. Birth Defects Res A Clin Mol Teratol. 2005;73:162–9.

    PubMed  Google Scholar 

  179. Dumoulin JC, Land JA, Van Montfoort AP, et al. Effect of in vitro culture of human embryos on birthweight of newborns. Hum Reprod. 2010;25:605–12.

    PubMed  Google Scholar 

  180. Kaneda M, Okano M, Hata K, et al. Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature. 2004;429:900–3.

    CAS  PubMed  Google Scholar 

  181. McLachlan RI, O’Bryan MK. State of the art for genetic testing of infertile men. J Clin Endocrinol Metab. 2010;95:1013–24.

    CAS  PubMed  Google Scholar 

  182. Cortessis VK, Thomas DC, Levine AJ, et al. Environmental epigenetics: prospects for studying epigenetic mediation of exposure-response relationships. Hum Genet. 2012;131:1565–89.

    CAS  PubMed Central  PubMed  Google Scholar 

  183. Skinner MK. Environmental epigenetic transgenerational inheritance and somatic epigenetic mitotic stability. Epigenetics. 2011;6:838–42.

    CAS  PubMed  Google Scholar 

  184. Skinner MK, Manikkam M, Guerrero-Bosagna C. Epigenetic transgenerational actions of environmental factors in disease etiology. Trends Endocrinol Metab. 2010;21:214–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  185. Skinner MK. Role of epigenetics in developmental biology and transgenerational inheritance. Birth Defects Res C Embryo Today. 2011;93:51–5.

    CAS  PubMed  Google Scholar 

  186. Skinner MK. Environmental epigenomics and disease susceptibility. EMBO Rep. 2011;12:620–2.

    CAS  PubMed Central  PubMed  Google Scholar 

  187. Jirtle RL, Skinner MK. Environmental epigenomics and disease susceptibility. Nat Rev Genet. 2007;8:253–62.

    CAS  PubMed  Google Scholar 

  188. Skinner MK. What is an epigenetic transgenerational phenotype? F3 or F2. Reprod Toxicol. 2008;25:2–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  189. Hussain N. Epigenetic influences that modulate infant growth, development, and disease. Antioxid Redox Signal. 2012;17:224–36.

    CAS  PubMed  Google Scholar 

  190. Chason RJ, Csokmay J, Segars JH, et al. Environmental and epigenetic effects upon preimplantation embryo metabolism and development. Trends Endocrinol Metab. 2011;22:412–20.

    CAS  PubMed Central  PubMed  Google Scholar 

  191. Godmann M, Lambrot R, Kimmins S. The dynamic epigenetic program in male germ cells: its role in spermatogenesis, testis cancer, and its response to the environment. Microsc Res Tech. 2009;72:603–19.

    CAS  PubMed  Google Scholar 

  192. Wolff GL, Kodell RL, Moore SR, et al. Maternal epigenetics and methyl supplements affect agouti gene expression in A(vy)/a mice. FASEB J. 1998;12:949–57.

    CAS  PubMed  Google Scholar 

  193. Cooney CA, Dave AA, Wolff GL. Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring. J Nutr. 2002;132:2393S–400.

    CAS  PubMed  Google Scholar 

  194. Zeisel SH. Epigenetic mechanisms for nutrition determinants of later health outcomes. Am J Clin Nutr. 2009;89:S1488–93.

    Google Scholar 

  195. Blount BC, Mack MM, Wehr CM, et al. Folate deficiency causes uracil misincorporation into human DNA and chromosome breakage: implications for cancer and neuronal damage. Proc Natl Acad Sci U S A. 1997;94:3290–5.

    CAS  PubMed Central  PubMed  Google Scholar 

  196. Friso S, Choi SW, Girelli D, et al. A common mutation in the 5,10-methylenetetrahydrofolate reductase gene affects genomic DNA methylation through an interaction with folate status. Proc Natl Acad Sci U S A. 2002;99:5606–11.

    CAS  PubMed Central  PubMed  Google Scholar 

  197. Waterland RA, Lin JR, Smith CA, et al. Post-weaning diet affects genomic imprinting at the insulin-like growth factor 2 (Igf2) locus. Hum Mol Genet. 2006;15:705–16.

    CAS  PubMed  Google Scholar 

  198. Bilinski P, Wojtyla A, Kapka-Skrzypczak L, et al. Epigenetic regulation in drug addiction. Ann Agric Environ Med. 2012;19:491–6.

    CAS  PubMed  Google Scholar 

  199. Csoka AB, Szyf M. Epigenetic side-effects of common pharmaceuticals: a potential new field in medicine and pharmacology. Med Hypotheses. 2009;73:770–80.

    CAS  PubMed  Google Scholar 

  200. Chuai YH, Xu XB, Wang AM. Preservation of fertility in females treated for cancer. Int J Biol Sci. 2012;8:1005–12.

    PubMed Central  PubMed  Google Scholar 

  201. Wallace WHB, Anderson RA, Irvine DS. Fertility preservation for young patients with cancer: who is at risk and what can be offered? Lancet Oncol. 2005;6:209–18.

    PubMed  Google Scholar 

  202. Leung W, Hudson MM, Strickland DK, et al. Late effects of treatment in survivors of childhood acute myeloid leukemia. J Clin Oncol. 2000;18:3273–9.

    CAS  PubMed  Google Scholar 

  203. Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science. 2001;293:1089–93.

    CAS  PubMed  Google Scholar 

  204. Rinaudo PF, Giritharan G, Talbi S, et al. Effects of oxygen tension on gene expression in preimplantation mouse embryos. Fertil Steril. 2006;86:1252–65.

    CAS  PubMed  Google Scholar 

  205. Dunn GA, Morgan CP, Bale TL. Sex-specificity in transgenerational epigenetic programming. Horm Behav. 2011;59:290–5.

    PubMed  Google Scholar 

  206. Barouki R, Gluckman PD, Grandjean P, et al. Developmental origins of non-communicable disease: implications for research and public health. Environ Health. 2012;11:42.

    PubMed Central  PubMed  Google Scholar 

  207. Metzger ML, Meacham LR, Patterson B, et al. Female reproductive health after childhood, adolescent, and young adult cancers: guidelines for the assessment and management of female reproductive complications. J Clin Oncol. 2013;31(9):1239–47.

    PubMed  Google Scholar 

  208. Hancke K, Isachenko V, Isachenko E, et al. Prevention of ovarian damage and infertility in young female cancer patients awaiting chemotherapy-clinical approach and unsolved issues. Support Care Cancer. 2011;19:1909–19.

    PubMed  Google Scholar 

  209. Green DM, Whitton JA, Stovall M, et al. Pregnancy outcome of partners of male survivors of childhood cancer: a report from the childhood cancer survivor study. J Clin Oncol. 2003;21:716–21.

    PubMed  Google Scholar 

  210. Green DN, Whitton JA, Stovall M, et al. Pregnancy outcome of female survivors of childhood cancer: a report from the Childhood Cancer Survivor Study. Am J Obstet Gynecol. 2002;187:1070–80.

    PubMed  Google Scholar 

  211. van Dorp W, van den Heuvel-Eibrink MM, Stolk L, et al. Genetic variation may modify ovarian reserve in female childhood cancer survivors. Hum Reprod. 2013;28(4):1069–76.

    PubMed  Google Scholar 

  212. Knopman JM, Papadopoulos EB, Grifo JA, et al. Surviving childhood and reproductive-age malignancy: effects on fertility and future parenthood. Lancet Oncol. 2010;11:490–8.

    PubMed  Google Scholar 

  213. Wallace WHB, Anderson RA, Irvine DA. Fertility preservation for young patients with cancer: who is at risk and what can be offered? (vol 6, pg 209, 2005). Lancet Oncol. 2005;6:922.

    Google Scholar 

  214. Maclaran K, Panay N. Premature ovarian failure. J Fam Plann Reprod Health Care. 2011;37:35–42.

    PubMed  Google Scholar 

  215. Oktem O, Urman B. Options of fertility preservation in female cancer patients. Obstet Gynecol Surv. 2010;65:531–42.

    PubMed  Google Scholar 

  216. Ben-Aharon I, Gafter-Gvili A, Leibovici L, et al. Pharmacological interventions for fertility preservation during chemotherapy: a systematic review and meta-analysis. Breast Cancer Res Treat. 2010;122:803–11.

    PubMed  Google Scholar 

  217. Blumenfeld Z, von Wolff M. GnRH-analogues and oral contraceptives for fertility preservation in women during chemotherapy. Hum Reprod Update. 2008;14:543–52.

    CAS  PubMed  Google Scholar 

  218. Jadoul P, Dolmans MM, Donnez J. Fertility preservation in girls during childhood: is it feasible, efficient and safe and to whom should it be proposed? Hum Reprod Update. 2010;16:617–30.

    PubMed  Google Scholar 

  219. Smitz J, Dolmans MM, Donnez J, et al. Current achievements and future research directions in ovarian tissue culture, in vitro follicle development and transplantation: implications for fertility preservation. Hum Reprod Update. 2010;16:395–414.

    CAS  PubMed Central  PubMed  Google Scholar 

  220. Wyns C, Curaba M, Vanabelle B, et al. Options for fertility preservation in prepubertal boys. Hum Reprod Update. 2010;16:312–28.

    PubMed  Google Scholar 

  221. Ding GL, Chen XJ, Luo Q, et al. Attenuated oocyte fertilization and embryo development associated with altered growth factor/signal transduction induced by endometriotic peritoneal fluid. Fertil Steril. 2010;93:2538–44.

    PubMed  Google Scholar 

  222. Macer ML, Taylor HS. Endometriosis and infertility: a review of the pathogenesis and treatment of endometriosis-associated infertility. Obstet Gynecol Clin North Am. 2012;39:535+.

    PubMed Central  PubMed  Google Scholar 

  223. Hanson M, Godfrey KM, Lillycrop KA, et al. Developmental plasticity and developmental origins of non-communicable disease: theoretical considerations and epigenetic mechanisms. Prog Biophys Mol Biol. 2011;106:272–80.

    PubMed  Google Scholar 

  224. Dominguez-Salas P, Cox SE, Prentice AM, et al. Maternal nutritional status, C-1 metabolism and offspring DNA methylation: a review of current evidence in human subjects. Proc Nutr Soc. 2012;71:154–65.

    CAS  PubMed Central  PubMed  Google Scholar 

  225. Papadopoulou E, Stratakis N, Roumeliotaki T, et al. The effect of high doses of folic acid and iron supplementation in early-to-mid pregnancy on prematurity and fetal growth retardation: the mother-child cohort study in Crete, Greece (Rhea study). Eur J Nutr. 2013;52:327–36.

    CAS  PubMed  Google Scholar 

  226. Chatzi L, Papadopoulou E, Koutra K, et al. Effect of high doses of folic acid supplementation in early pregnancy on child neurodevelopment at 18 months of age: the mother-child cohort ‘Rhea’ study in Crete. Greece Public Health Nutr. 2012;15:1728–36.

    Google Scholar 

  227. Matok I, Gorodischer R, Koren G, et al. Exposure to folic acid antagonists during the first trimester of pregnancy and the risk of major malformations. Br J Clin Pharmacol. 2009;68:956–62.

    CAS  PubMed Central  PubMed  Google Scholar 

  228. Yazdy MM, Honein MA, Xing J. Reduction in orofacial clefts following folic acid fortification of the US grain supply. Birth Defects Res A Clin Mol Teratol. 2007;79:16–23.

    CAS  PubMed  Google Scholar 

  229. Julvez J, Fortuny J, Mendez M, et al. Maternal use of folic acid supplements during pregnancy and four-year-old neurodevelopment in a population-based birth cohort. Paediatr Perinat Epidemiol. 2009;23:199–206.

    PubMed  Google Scholar 

  230. Schlotz W, Jones A, Phillips DIW, et al. Lower maternal folate status in early pregnancy is associated with childhood hyperactivity and peer problems in offspring. J Child Psychol Psychiatry. 2010;51:594–602.

    PubMed Central  PubMed  Google Scholar 

  231. Laanpere M, Altmae S, Stavreus-Evers A, et al. Folate-mediated one-carbon metabolism and its effect on female fertility and pregnancy viability. Nutr Rev. 2010;68:99–113.

    PubMed  Google Scholar 

  232. Dolinoy DC, Huang D, Jirtle RL. Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc Natl Acad Sci U S A. 2007;104:13056–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  233. Cropley JE, Suter CM, Beckman KB, et al. Germ-line epigenetic modification of the murine A(vy) allele by nutritional supplementation. Proc Natl Acad Sci U S A. 2006;103:17308–12.

    CAS  PubMed Central  PubMed  Google Scholar 

  234. Martin J, Cervero A, Mir P, et al. The impact of next-generation sequencing technology on preimplantation genetic diagnosis and screening. Fertil Steril. 2013;99:1054-U1225.

    Google Scholar 

  235. Harper JC, Wilton L, Traeger-Synodinos J, et al. The ESHRE PGD Consortium: 10 years of data collection. Hum Reprod Update. 2012;18:234–47.

    CAS  PubMed  Google Scholar 

  236. Nargund G, Chian RC. ISMAAR: Leading the global agenda for a more physiological, patient-centred, accessible and safer approaches in ART. J Assist Reprod Genet. 2013;30:155–6.

    PubMed Central  PubMed  Google Scholar 

  237. Klip H, Verloop J, van Gool JD, et al. Hypospadias in sons of women exposed to diethylstilbestrol in utero: a cohort study. Lancet. 2002;359:1102–7.

    CAS  PubMed  Google Scholar 

  238. Hernandez-Diaz S. Iatrogenic legacy from diethylstilbestrol exposure. Lancet. 2002;359:1081–2.

    PubMed  Google Scholar 

  239. Wojtyla A. Application of the hypothesis of Developmental Origin of Health and Diseases (DOHaD) in epidemiological studies of women at reproductive age and pregnant women in Poland. Ann Agric Environ Med. 2011;18:355–64.

    PubMed  Google Scholar 

  240. Lillycrop KA, Burdge GC. The effect of nutrition during early life on the epigenetic regulation of transcription and implications for human diseases. J Nutrigenet Nutrigenomics. 2011;4:248–60.

    CAS  PubMed  Google Scholar 

  241. Simpson JL. Cell-free fetal DNA and maternal serum analytes for monitoring embryonic and fetal status. Fertil Steril. 2013;99:1124–34.

    CAS  PubMed  Google Scholar 

  242. Scala I, Parenti G, Andria G. Universal screening for inherited metabolic diseases in the neonate (and the fetus). J Matern Fetal Neonatal Med. 2012;25:4–6.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Ming Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zhu, XM., Zhang, Y., Chen, XJ., Huang, HF. (2014). Gamete/Embryo-Fetal Origins of Infertility. In: Huang, HF., Sheng, JZ. (eds) Gamete and Embryo-fetal Origins of Adult Diseases. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7772-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7772-9_9

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7771-2

  • Online ISBN: 978-94-007-7772-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics