Skip to main content

Gamete/Embryo-Fetal Origins of Obesity

  • Chapter
  • First Online:
Gamete and Embryo-fetal Origins of Adult Diseases

Abstract

Obesity is defined as abnormal or accumulation of excessive fat accumulation. More than 1.4 billion adults were overweight in 2008, of these over 200 million men and nearly 300 million women were obese. Obesity has become one of the most important risk factors contributing to the overall burden of diseases worldwide, so much so that the World Health Organization (WHO) has called obesity an epidemic.

Origins of obesity and metabolic dysfunction can be traced back to the embryonic and fetal stages of life, when the developing fetus is acted upon by, and responds to, sub-optimal, intrauterine environments during critical periods of cellular proliferation, differentiation, and maturation. It produces structural and functional changes in cells, tissues and organ systems. These changes may have long-term consequences increasing an individual’s risk for developing complex common disorders including obesity, diabetes, cardiovascular disease and tumours. In this chapter, we will discuss the evidence related to embryo-fetal origins of obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gluckman PD, Hanson MA, Cooper C, et al. Effect of in utero and early-life conditions on adult health and disease. N Engl J Med. 2008;359:61–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  2. Rugholm S, Baker JL, Olsen LW, et al. Stability of the association between birth weight and childhood overweight during the development of the obesity epidemic. Obes Res. 2005;13:2187–94.

    PubMed  Google Scholar 

  3. Harder T, Roepke K, Diller N, et al. Birth weight, early weight gain, and subsequent risk of type 1 diabetes: systematic review and meta-analysis. Am J Epidemiol. 2009;169:1428–36.

    PubMed  Google Scholar 

  4. Batty GD, Shipley MJ, Jarrett RJ, et al. Obesity and overweight in relation to disease-specific mortality in men with and without existing coronary heart disease in London: the original Whitehall study. Heart. 2006;92:886–92.

    CAS  PubMed Central  PubMed  Google Scholar 

  5. Whitlock G, Lewington S, Sherliker P, et al. Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies. Lancet. 2009;373:1083–96.

    PubMed  Google Scholar 

  6. Wilcox AJ. On the importance – and the unimportance – of birthweight. Int J Epidemiol. 2001;30:1233–41.

    CAS  PubMed  Google Scholar 

  7. Galtier-Dereure F, Boegner C, Bringer J. Obesity and pregnancy: complications and cost. Am J Clin Nutr. 2000;71:1242S–8.

    CAS  PubMed  Google Scholar 

  8. LaCoursiere DY, Bloebaum L, Douncan JD, et al. Population-based trends and correlates of maternal overweight and obesity, Utah 1991–2001. Am J Obstet Gynecol. 2005;192:832–9.

    PubMed  Google Scholar 

  9. Barker DJ, Forsén T, Eriksson JG, et al. Growth and living conditions in childhood and hypertension in adult life: a longitudinal study. J Hypertens. 2002;20:1951–6.

    CAS  PubMed  Google Scholar 

  10. Kajantie E, Osmond C, Barker DJ, et al. Size at birth as a predictor of mortality in adulthood: a follow-up of 350,000 person-years. Int J Epidemiol. 2005;34:655–63.

    PubMed  Google Scholar 

  11. McGuire S. WHO, World Food Programme, and International Fund for Agricultural Development. 2012. The State of Food Insecurity in the World 2012. Economic growth is necessary but not sufficient to accelerate reduction of hunger and malnutrition. Rome, FAO. Adv Nutr 2013;4:126–127

    Google Scholar 

  12. Roseboom TJ, van der Meulen JH, Ravelli AC, et al. Effects of prenatal exposure to the Dutch famine on adult disease in later life: an overview. Mol Cell Endocrinol. 2001;185:93–8.

    CAS  PubMed  Google Scholar 

  13. Ravelli GP, Stein ZA, Susser MW. Obesity in young men after famine exposure in utero and early infancy. N Engl J Med. 1976;295:349–53.

    CAS  PubMed  Google Scholar 

  14. Vignini A, Raffaelli F, Cester A, et al. Environmental and genetical aspects of the link between pregnancy, birth size, and type 2 diabetes. Curr Diabetes Rev. 2012;8:155–61.

    CAS  PubMed  Google Scholar 

  15. Barker DJ, Osmond C, Simmonds SJ, et al. The relation of small head circumference and thinness at birth to death from cardiovascular disease in adult life. BMJ. 1993;306:422–6.

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Eriksson JG, Forsen T, Tuomilehto J, et al. Early growth, adult income, and risk of stroke. Stroke. 2000;31:869–74.

    CAS  PubMed  Google Scholar 

  17. Huxley R, Owen CG, Whincup PH, et al. Is birth weight a risk factor for ischemic heart disease in later life? Am J Clin Nutr. 2007;85:1244–50.

    CAS  PubMed  Google Scholar 

  18. Jimenez-Chillaron JC, Isganaitis E, Charalambous M, et al. Intergenerational transmission of glucose intolerance and obesity by in utero undernutrition in mice. Diabetes. 2009;58:460–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Ikenasio-Thorpe BA, Breier BH, Vickers MH, et al. Prenatal influences on susceptibility to diet-induced obesity are mediated by altered neuroendocrine gene expression. J Endocrinol. 2007;193:31–7.

    CAS  PubMed  Google Scholar 

  20. Long NM, Tousley CB, Underwood KR, et al. Effects of early- to mid-gestational undernutrition with or without protein supplementation on offspring growth, carcass characteristics, and adipocyte size in beef cattle. J Anim Sci. 2012;90:197–206.

    CAS  PubMed  Google Scholar 

  21. Ford SP, Hess BW, Schwope MM, et al. Maternal undernutrition during early to mid-gestation in the ewe results in altered growth, adiposity, and glucose tolerance in male offspring. J Anim Sci. 2007;85:1285–94.

    CAS  PubMed  Google Scholar 

  22. Hales CN, Barker DJ. The thrifty phenotype hypothesis. Br Med Bull. 2001;60:5–20.

    CAS  PubMed  Google Scholar 

  23. Vickers MH, Breier BH, Cutfield WS, Hofman PL, Gluckman PD. Fetal origins of hyperphagia, obesity, and hypertension and postnatal amplification by hypercaloric nutrition. Am J Physiol Endocrinol Metab. 2000;279:E83–7.

    CAS  PubMed  Google Scholar 

  24. Levin BE. The obesity epidemic: metabolic imprinting on genetically susceptible neural circuits. Obes Res. 2000;8:342–7.

    CAS  PubMed  Google Scholar 

  25. Vickers MH, Breier BH, McCarthy D, et al. Sedentary behavior during postnatal life is determined by the prenatal environment and exacerbated by postnatal hypercaloric nutrition. Am J Physiol Regul Integr Comp Physiol. 2003;285:R271–3.

    CAS  PubMed  Google Scholar 

  26. Sebaai N, Lesage J, Breton C, et al. Perinatal food deprivation induces marked alterations of the hypothalamo-pituitary-adrenal axis in 8-month-old male rats both under basal conditions and after a dehydration period. Neuroendocrinology. 2004;79:163–73.

    CAS  PubMed  Google Scholar 

  27. Anouar Y, Vieau D. Maternal perinatal undernutrition has long-term consequences on morphology, function and gene expression of the adrenal medulla in the adult male rat. J Neuroendocrinol. 2011;23:711–24.

    PubMed  Google Scholar 

  28. Vieau D, Sebaai N, Leonhardt M, et al. HPA axis programming by maternal undernutrition in the male rat offspring. Psychoneuroendocrinology. 2007;32 Suppl 1:S16–20.

    CAS  PubMed  Google Scholar 

  29. Bird A. DNA methylation patterns and epigenetic memory. Genes Dev. 2002;16:6–21.

    CAS  PubMed  Google Scholar 

  30. Burdge GC, Hanson MA, Slater-Jefferies JL, et al. Epigenetic regulation of transcription: a mechanism for inducing variations in phenotype (fetal programming) by differences in nutrition during early life? Br J Nutr. 2007;97:1036–46.

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Maclennan NK, James SJ, Melnyk S, et al. Uteroplacental insufficiency alters DNA methylation, one-carbon metabolism, and histone acetylation in IUGR rats. Physiol Genomics. 2004;18:43–50.

    PubMed  Google Scholar 

  32. Dolinoy DC, Weidman JR, Waterland RA, et al. Maternal genistein alters coat color and protects Avy mouse offspring from obesity by modifying the fetal epigenome. Environ Health Perspect. 2006;114:567–72.

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Fu Q, McKnight RA, Yu X, et al. Uteroplacental insufficiency induces site-specific changes in histone H3 covalent modifications and affects DNA-histone H3 positioning in day 0 IUGR rat liver. Physiol Genomics. 2004;20:108–16.

    CAS  PubMed  Google Scholar 

  34. Chong S, Vickaryous N, Ashe A, et al. Modifiers of epigenetic reprogramming show paternal effects in the mouse. Nat Genet. 2007;39:614–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Morgan HD, Sutherland HG, Martin DI, et al. Epigenetic inheritance at the agouti locus in the mouse. Nat Genet. 1999;23:314–18.

    CAS  PubMed  Google Scholar 

  36. Anway MD, Cupp AS, Uzumcu M, et al. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science. 2005;308:1466–9.

    CAS  PubMed  Google Scholar 

  37. Stevens A, Begum G, Cook A, et al. Epigenetic changes in the hypothalamic proopiomelanocortin and glucocorticoid receptor genes in the ovine fetus after periconceptional undernutrition. Endocrinology. 2010;151:3652–64.

    CAS  PubMed  Google Scholar 

  38. Heijmans BT, Tobi EW, Stein AD, et al. Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci U S A. 2008;105:17046–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Godfrey KM, Sheppard A, Gluckman PD, et al. Epigenetic gene promoter methylation at birth is associated with child’s later adiposity. Diabetes. 2011;60:1528–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Begum G, Stevens A, Smith EB, et al. Epigenetic changes in fetal hypothalamic energy regulating pathways are associated with maternal undernutrition and twinning. FASEB J. 2012;26:1694–703.

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Lillycrop KA, Slater-Jefferies JL, Hanson MA, et al. Induction of altered epigenetic regulation of the hepatic glucocorticoid receptor in the offspring of rats fed a protein-restricted diet during pregnancy suggests that reduced DNA methyltransferase-1 expression is involved in impaired DNA methylation and changes in histone modifications. Br J Nutr. 2007;97:1064–73.

    CAS  PubMed Central  PubMed  Google Scholar 

  42. Tamashiro KL, Wakayama T, Akutsu H, et al. Cloned mice have an obese phenotype not transmitted to their offspring. Nat Med. 2002;8(3):262–7.

    CAS  PubMed  Google Scholar 

  43. Hales CN, Barker DJ, Clark PM, et al. Fetal and infant growth and impaired glucose tolerance at age 64. BMJ. 1991;303:1019–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  44. Randhawa RS. The insulin-like growth factor system and fetal growth restriction. Pediatr Endocrinol Rev. 2008;6:235–40.

    PubMed  Google Scholar 

  45. Hyatt MA, Keisler DH, Budge H, et al. Maternal parity and its effect on adipose tissue deposition and endocrine sensitivity in the postnatal sheep. J Endocrinol. 2010;204:173–9.

    CAS  PubMed Central  PubMed  Google Scholar 

  46. Hocquette JF, Sauerwein H, Higashiyama Y, et al. Prenatal developmental changes in glucose transporters, intermediary metabolism and hormonal receptors related to the IGF/insulin-glucose axis in the heart and adipose tissue of bovines. Reprod Nutr Dev. 2006;46:257–72.

    CAS  PubMed  Google Scholar 

  47. Sohlström A, Katsman A, Kind KL, et al. Food restriction alters pregnancy-associated changes in IGF and IGFBP in the guinea pig. Am J Physiol. 1998;274(3 Pt 1):E410–16.

    PubMed  Google Scholar 

  48. Thamotharan M, Shin BC, Suddirikku DT, et al. GLUT4 expression and subcellular localization in the intrauterine growth-restricted adult rat female offspring. Am J Physiol Endocrinol Metab. 2005;288:E935–47.

    CAS  PubMed  Google Scholar 

  49. Armitage JA, Khan IY, Taylor PD, et al. Developmental programming of the metabolic syndrome by maternal nutritional imbalance: how strong is the evidence from experimental models in mammals? J Physiol. 2004;561(Pt 2):355–77.

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Shankar K, Harrell A, Liu X, et al. Maternal obesity at conception programs obesity in the offspring. Am J Physiol Regul Integr Comp Physiol. 2008;294:R528–38.

    CAS  PubMed  Google Scholar 

  51. Guo F, Jen KL. High-fat feeding during pregnancy and lactation affects offspring metabolism in rats. Physiol Behav. 1995;57:681–6.

    CAS  PubMed  Google Scholar 

  52. Levin BE, Govek E. Gestational obesity accentuates obesity in obesity-prone progeny. Am J Physiol. 1998;275(4 Pt 2):R1374–9.

    CAS  PubMed  Google Scholar 

  53. Salihu HM, Weldeselasse HE, Rao K, et al. The impact of obesity on maternal morbidity and feto-infant outcomes among macrosomic infants. J Matern Fetal Neonatal Med. 2011;24:1088–94.

    PubMed  Google Scholar 

  54. Bayol SA, Farrington SJ, Stickland NC. A maternal ‘junk food’ diet in pregnancy and lactation promotes an exacerbated taste for ‘junk food’ and a greater propensity for obesity in rat offspring. Br J Nutr. 2007;98:843–51.

    CAS  PubMed  Google Scholar 

  55. Bayol SA, Simbi BH, Bertrand JA, et al. Offspring from mothers fed a ‘junk food’ diet in pregnancy and lactation exhibit exacerbated adiposity that is more pronounced in females. J Physiol. 2008;586:3219–30.

    CAS  PubMed Central  PubMed  Google Scholar 

  56. Samuelsson AM, Matthews PA, Argenton M, et al. Diet-induced obesity in female mice leads to offspring hyperphagia, adiposity, hypertension, and insulin resistance: a novel murine model of developmental programming. Hypertension. 2008;51:383–92.

    CAS  PubMed  Google Scholar 

  57. Yan X, Zhu MJ, Xu W, et al. Up-regulation of Toll-like receptor 4/nuclear factor-kB signaling is associated with enhanced adipogenesis and insulin resistance in fetal skeletal muscle of obese sheep at late gestation. Endocrinology. 2010;151:380–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Liang C, Oest ME, Prater MR. Intrauterine exposure to high saturated fat diet elevates risk of adult-onset chronic diseases in C57BL/6 mice. Birth Defects Res B Dev Reprod Toxicol. 2009;86:377–84.

    CAS  PubMed  Google Scholar 

  59. Howie GJ, Sloboda DM, Kamal T, et al. Maternal nutritional history predicts obesity in adult offspring independent of postnatal diet. J Physiol. 2009;587(Pt 4):905–15.

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Nivoit P, Morens C, Van Assche FA, et al. Established diet-induced obesity in female rats leads to offspring hyperphagia, adiposity and insulin resistance. Diabetologia. 2009;52:1133–42.

    CAS  PubMed  Google Scholar 

  61. Tamashiro KL, Terrillion CE, Hyun J, et al. Prenatal stress or high-fat diet increases susceptibility to diet-induced obesity in rat offspring. Diabetes. 2009;58:1116–25.

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Taylor PD, McConnell J, Khan IY, et al. Impaired glucose homeostasis and mitochondrial abnormalities in offspring of rats fed a fat-rich diet in pregnancy. Am J Physiol Regul Integr Comp Physiol. 2005;288:R134–9.

    CAS  PubMed  Google Scholar 

  63. Khan IY, Taylor PD, Dekou V, et al. Gender-linked hypertension in offspring of lard-fed pregnant rats. Hypertension. 2003;41:168–75.

    CAS  PubMed  Google Scholar 

  64. Palinski W, D’Armiento FP, Witztum JL, et al. Maternal hypercholesterolemia and treatment during pregnancy influence the long-term progression of atherosclerosis in offspring of rabbits. Circ Res. 2001;89:991–6.

    CAS  PubMed  Google Scholar 

  65. Bayol SA, Simbi BH, Stickland NC. A maternal cafeteria diet during gestation and lactation promotes adiposity and impairs skeletal muscle development and metabolism in rat offspring at weaning. J Physiol. 2005;567(Pt 3):951–61.

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Hay Jr WW. Placental transport of nutrients to the fetus. Horm Res. 1994;42:215–22.

    CAS  PubMed  Google Scholar 

  67. Mühlhäusler BS. Programming of the appetite-regulating neural network: a link between maternal overnutrition and the programming of obesity? J Neuroendocrinol. 2007;19:67–72.

    PubMed  Google Scholar 

  68. Muhlhausler BS, Adam CL, Findlay PA, et al. Increased maternal nutrition alters development of the appetite-regulating network in the brain. FASEB J. 2006;20:1257–9.

    CAS  PubMed  Google Scholar 

  69. Kalra SP, Dube MG, Pu S, et al. Interacting appetite-regulating pathways in the hypothalamic regulation of body weight. Endocr Rev. 1999;20:68–100.

    CAS  PubMed  Google Scholar 

  70. Warnes KE, Morris MJ, Symonds ME, et al. Effects of increasing gestation, cortisol and maternal undernutrition on hypothalamic neuropeptide Y expression in the sheep fetus. J Neuroendocrinol. 1998;10:51–7.

    CAS  PubMed  Google Scholar 

  71. Muhlhausler BS, McMillen IC, Rouzaud G, et al. Appetite regulatory neuropeptides are expressed in the sheep hypothalamus before birth. J Neuroendocrinol. 2004;16:502–7.

    CAS  PubMed  Google Scholar 

  72. O’Reilly JR, Reynolds RM. The risk of maternal obesity to the long-term health of the offspring. Clin Endocrinol (Oxf). 2013;78:9–16.

    Google Scholar 

  73. Smink A, Ribas-Fiton N, Garcia R, et al. Exposure to hexachlorobenzene during pregnancy increases the risk of overweight in children aged 6 years. Acta Paediatr. 2008;97:1465–9.

    CAS  PubMed  Google Scholar 

  74. Faust IM, Johnson PR, Stern JS, et al. Diet-induced adipocyte number increase in adult rats: a new model of obesity. Am J Physiol. 1978;235:E279–86.

    CAS  PubMed  Google Scholar 

  75. Adam CL, Bake T, Findlay PA, et al. Effects of altered glucose supply and adiposity on expression of hypothalamic energy balance regulatory genes in late gestation growth restricted ovine fetuses. Int J Dev Neurosci. 2011;29:775–81.

    CAS  PubMed  Google Scholar 

  76. Fajas L, Debril MB, Auwerx J. Peroxisome proliferator-activated receptor-gamma: from adipogenesis to carcinogenesis. J Mol Endocrinol. 2001;27:1–9.

    CAS  PubMed  Google Scholar 

  77. Bao S, Obata Y, Carroll J, et al. Epigenetic modifications necessary for normal development are established during oocyte growth in mice. Biol Reprod. 2000;62:616–21.

    CAS  PubMed  Google Scholar 

  78. Allegrucci C, Thurston A, Lucas E, et al. Epigenetics and the germline. Reproduction. 2005;129:137–49.

    CAS  PubMed  Google Scholar 

  79. Vickers MH. Developmental programming of the metabolic syndrome – critical windows for intervention. World J Diabetes. 2011;2:137–48.

    PubMed Central  PubMed  Google Scholar 

  80. Davidowa H, Plagemann A. Decreased inhibition by leptin of hypothalamic arcuate neurons in neonatally overfed young rats. Neuroreport. 2000;11:2795–8.

    CAS  PubMed  Google Scholar 

  81. Lawlor DA, Relton C, Sattar N, et al. Maternal adiposity – a determinant of perinatal and offspring outcomes? Nat Rev Endocrinol. 2012;8:679–88.

    PubMed  Google Scholar 

  82. Cooper R, Pinto Pereira SM, Power C, et al. Parental obesity and risk factors for cardiovascular disease among their offspring in mid-life: findings from the 1958 British Birth Cohort Study. Int J Obes (Lond). 2013. doi:10.1038/ijo.2013.40.

    Google Scholar 

  83. Whitaker RC, Wright JA, Pepe MS, et al. Predicting obesity in young adulthood from childhood and parental obesity. N Engl J Med. 1997;337:869–73.

    CAS  PubMed  Google Scholar 

  84. Whitaker KL, Jarvis MJ, Beeken RJ, et al. Comparing maternal and paternal intergenerational transmission of obesity risk in a large population-based sample. Am J Clin Nutr. 2010;91:1560–7.

    CAS  PubMed  Google Scholar 

  85. Perez-Pastor EM, Metcalf BS, Hosking J, et al. Assortative weight gain in mother-daughter and father-son pairs: an emerging source of childhood obesity. Longitudinal study of trios (EarlyBird 43). Int J Obes (Lond). 2009;33:727–35.

    CAS  Google Scholar 

  86. Leary S, Davey Smith G, Ness A. No evidence of large differences in mother-daughter and father-son body mass index concordance in a large UK birth cohort. Int J Obes (Lond). 2010;34:1191–2.

    CAS  Google Scholar 

  87. Ng SF, Lin RC, Laybutt DR, et al. Chronic high-fat diet in fathers programs β-cell dysfunction in female rat offspring. Nature. 2010;467:963–6.

    CAS  PubMed  Google Scholar 

  88. Carone BR, Fauquier L, Habib N, et al. Paternally induced transgenerational environmental reprogramming of metabolic gene expression in mammals. Cell. 2010;143:1084–96.

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Gladen BC, Ragan NB, Rogan WJ. Pubertal growth and development and prenatal and lactational exposure to polychlorinated biphenyls and dichlorodiphenyl dichloroethene. J Pediatr. 2000;136:490–6.

    CAS  PubMed  Google Scholar 

  90. Newbold RR, Padilla-Banks E, Jefferson WN, et al. Effects of endocrine disruptors on obesity. Int J Androl. 2008;31:201–8.

    CAS  PubMed  Google Scholar 

  91. Newbold RR. Developmental exposure to endocrine-disrupting chemicals programs for reproductive tract alterations and obesity later in life. Am J Clin Nutr. 2011;94:1939S–42.

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Newbold RR, Padilla-Banks E, Snyder RJ, et al. Perinatal exposure to environmental estrogens and the development of obesity. Mol Nutr Food Res. 2007;51:912–17.

    CAS  PubMed  Google Scholar 

  93. Oken E, Levitan EB, Gillman MW. Maternal smoking during pregnancy and child overweight: systematic review and meta-analysis. Int J Obes (Lond). 2008;32:201–10.

    CAS  Google Scholar 

  94. Windham GC, Eaton A, Hopkins B. Evidence for an association between environmental tobacco smoke exposure and birthweight: a meta-analysis and new data. Paediatr Perinat Epidemiol. 1999;13:35–57.

    CAS  PubMed  Google Scholar 

  95. Leonardi-Bee J, Smyth A, Britton J, et al. Environmental tobacco smoke and fetal health: systematic review and meta-analysis. Arch Dis Child Fetal Neonatal Ed. 2008;93:F351–61.

    CAS  PubMed  Google Scholar 

  96. Iñiguez C, Ballester F, Amorós R, et al. Active and passive smoking during pregnancy and ultrasound measures of fetal growth in a cohort of pregnant women. J Epidemiol Community Health. 2012;66:563–70.

    PubMed  Google Scholar 

  97. Grove KL, Sekhon HS, Brogan RS, et al. Chronic maternal nicotine exposure alters neuronal systems in the arcuate nucleus that regulate feeding behavior in the newborn rhesus macaque. J Clin Endocrinol Metab. 2001;86:5420–6.

    CAS  PubMed  Google Scholar 

  98. Gao YJ, Holloway AC, Zeng Z, et al. Prenatal exposure to nicotine causes postnatal obesity and altered perivascular adipose tissue function. Obes Res. 2005;13:1–6.

    Google Scholar 

  99. Holloway AC, Lim GE, Petrik JJ, et al. Fetal and neonatal exposure to nicotine in Wistar rats results in increased beta cell apoptosis at birth and postnatal endocrine and metabolic changes associated with type 2 diabetes. Diabetologia. 2005;48:2661–6.

    CAS  PubMed  Google Scholar 

  100. Li MD, Parker SL, Kane JK. Regulation of feeding-associated peptides and receptors by nicotine. Mol Neurobiol. 2000;22:143–65.

    CAS  PubMed  Google Scholar 

  101. Mantzoros CS, Varvarigou A, Kaklamani VG, et al. Effect of birth weight and maternal smoking on cord blood leptin concentrations of full-term and preterm newborns. J Clin Endocrinol Metab. 1997;82:2856–61.

    CAS  PubMed  Google Scholar 

  102. Helland IB, Reseland JE, Saugstad OD, et al. Smoking related to plasma leptin concentration in pregnant women and their newborn infants. Acta Paediatr. 2001;90:282–7.

    CAS  PubMed  Google Scholar 

  103. Diamanti-Kandarakis E, Piperi C. Genetics of polycystic ovary syndrome: searching for the way out of the labyrinth. Hum Reprod Update. 2005;11:631–43.

    CAS  PubMed  Google Scholar 

  104. Carmina E, Bucchieri S, Esposito A, et al. Abdominal fat quantity and distribution in women with polycystic ovary syndrome and extent of its relation to insulin resistance. J Clin Endocrinol Metab. 2007;92:2500–5.

    CAS  PubMed  Google Scholar 

  105. Barber TM, McCarthy MI, Wass JA, et al. Obesity and polycystic ovary syndrome. Clin Endocrinol (Oxf). 2006;65:137–45.

    CAS  Google Scholar 

  106. Baillargeon JP, Carpentier AC. Brothers of women with polycystic ovary syndrome are characterised by impaired glucose tolerance, reduced insulin sensitivity and related metabolic defects. Diabetologia. 2007;50:2424–32.

    PubMed  Google Scholar 

  107. Herbert A, Gerry NP, McQueen MB, et al. A common genetic variant is associated with adult and childhood obesity. Science. 2006;312:279–83.

    CAS  PubMed  Google Scholar 

  108. Escobar-Morreale HF, Samino S, Insenser M, et al. Metabolic heterogeneity in polycystic ovary syndrome is determined by obesity: plasma metabolomic approach using GC-MS. Clin Chem. 2012;58:999–1009.

    CAS  PubMed  Google Scholar 

  109. Loos RJ, Lindgren CM, Li S, et al. Common variants near MC4R are associated with fat mass, weight and risk of obesity. Nat Genet. 2008;40:768–75.

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Renstrom F, Payne F, Nordstrom A, et al. Replication and extension of genome-wide association study results for obesity in 4923 adults from northern Sweden. Hum Mol Genet. 2009;18:1489–96.

    PubMed Central  PubMed  Google Scholar 

  111. Willer C. Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nat Genet. 2009;41:25–34.

    CAS  PubMed Central  PubMed  Google Scholar 

  112. Scuteri A, Sanna S, Chen WM, et al. Genome-wide association scan shows genetic variants in the FTO gene are associated with obesity-related traits. PLoS Genet. 2007;3:1200–10.

    CAS  Google Scholar 

  113. Barbieri RL, Makris A, Ryan KJ. Insulin stimulates androgen accumulation in incubations of human ovarian stroma and theca. Obstet Gynecol. 1984;64:S73–80.

    Google Scholar 

  114. Bremer AA, Miller WL. The serine phosphorylation hypothesis of polycystic ovary syndrome: a unifying mechanism for hyperandrogenemia and insulin resistance. Fertil Steril. 2008;89:1039–48.

    CAS  PubMed  Google Scholar 

  115. Diamanti-Kandarakis E, Argyrakopoulou G, Economou F, et al. Defects in insulin signaling pathways in ovarian steroidogenesis and other tissues in polycystic ovary syndrome (PCOS). J Steroid Biochem Mol Biol. 2008;109:242–6.

    CAS  PubMed  Google Scholar 

  116. Dunaif A, Segal KR, Futterweit W, et al. Profound peripheral insulin resistance, independent of obesity, in polycystic ovary syndrome. Diabetes. 1989;38:1165–74.

    CAS  PubMed  Google Scholar 

  117. Ackerman CM, Lowe LP, Lee H, et al. The role of the polycystic ovary syndrome susceptibility locus D19S884 allele 8 in maternal glycemia and fetal size. J Clin Endocrinol Metab. 2010;95:3242–50.

    CAS  PubMed Central  PubMed  Google Scholar 

  118. Urbanek M, Woodroffe A, Ewens KG, et al. Candidate gene region for polycystic ovary syndrome on chromosome 19p13.2. J Clin Endocrinol Metab. 2005;90:6623–9.

    CAS  PubMed  Google Scholar 

  119. Neptune ER, Frischmeyer PA, Arking DE, et al. Dysregulation of TGF-β activation contributes to pathogenesis in Marfan syndrome. Nat Genet. 2003;33:407–11.

    CAS  PubMed  Google Scholar 

  120. Herder C, Zierer A, Koenig W, et al. Transforming growth factor-beta1 and incident type 2 diabetes: results from the MONICA/KORA case-cohort study, 1984–2002. Diabetes Care. 2009;32:1921–3.

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Mukherjee A, Sidis Y, Mahan A, et al. FSTL3 deletion reveals roles for TGF-β family ligands in glucose and fat homeostasis in adults. Proc Natl Acad Sci U S A. 2007;104:1348–53.

    CAS  PubMed Central  PubMed  Google Scholar 

  122. Pfeiffer A, Middelberg-Bisping K, Drewes C. Elevated plasma levels of transforming growth factor-β1 in NIDDM. Diabetes Care. 1996;19:1113–17.

    CAS  PubMed  Google Scholar 

  123. Urbanek M, Sam S, Legro RS, et al. Identification of a polycystic ovary syndrome susceptibility variant in fibrillin-3 and association with a metabolic phenotype. J Clin Endocrinol Metab. 2007;92:4191–8.

    CAS  PubMed  Google Scholar 

  124. Hwang JY, Lee EJ, Jin Go M, et al. Genome-wide association study identifies GYS2 as a novel genetic factor for polycystic ovary syndrome through obesity-related condition. J Hum Genet. 2012;57:660–4.

    CAS  PubMed  Google Scholar 

  125. Huo J, Xu S, Lam KP. Fas apoptosis inhibitory molecule regulates T cell receptor mediated apoptosis of thymocytes by modulating Akt activation and Nur77 expression. J Biol Chem. 2010;285:11827–35.

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Soggia AP, Correa-Giannella ML, Fortes MA, et al. A novel mutation in the glycogen synthase 2 gene in a child with glycogen storage disease type 0. BMC Med Genet. 2010;11:3.

    PubMed Central  PubMed  Google Scholar 

  127. Morton NM, Nelson YB, Michailidou Z, et al. A stratified transcriptomics analysis of polygenic fat and lean mouse adipose tissues identifies novel candidate obesity genes. PLoS One. 2011;6(9):e23944.

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Schweighofer N, Lerchbaum E, Trummer O, et al. Androgen levels and metabolic parameters are associated with a genetic variant of F13A1 in women with polycystic ovary syndrome. Gene. 2012;504(1):133–9.

    CAS  PubMed  Google Scholar 

  129. Billings LK, Hsu YH, Ackerman RJ, et al. Impact of common variation in bone-related genes on type 2 diabetes and related traits. Diabetes. 2012;61:2176–86.

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Mlinar B, Marc J, Jensterle M, et al. Expression of 11β-hydroxysteroid dehydrogenase type 1 in visceral and subcutaneous adipose tissues of patients with polycystic ovary syndrome is associated with adiposity. J Steroid Biochem Mol Biol. 2011;123:127–32.

    CAS  PubMed  Google Scholar 

  131. Draper N, Stewart PM. 11beta-hydroxysteroid dehydrogenase and the prereceptor regulation of corticosteroid hormone action. J Endocrinol. 2005;186:251–71.

    CAS  PubMed  Google Scholar 

  132. Macfarlane DP, Forbes S, Walker BR. Glucocorticoids and fatty acid metabolism in humans: fuelling fat redistribution in the metabolic syndrome. J Endocrinol. 2008;197:189–204.

    CAS  PubMed  Google Scholar 

  133. Paulsen SK, Pedersen SB, Fisker S. 11beta-HSD type 1 expression in human adipose tissue: impact of gender, obesity, and fat localization. Obesity. 2007;15:1954–60.

    CAS  PubMed  Google Scholar 

  134. Desbriere R, Vuaroqueaux V, Achard V, et al. 11beta-Hydroxysteroid dehydrogenase type 1 mRNA is increased in both visceral and subcutaneous adipose tissue of obese patients. Obesity. 2006;14:794–8.

    CAS  PubMed  Google Scholar 

  135. Li X, Lindquist S, Chen R, et al. Depotspecific messenger RNA expression of 11 beta-hydroxysteroid dehydrogenase type 1 and leptin in adipose tissue of children and adults. Int J Obes. 2007;31:820–8.

    CAS  Google Scholar 

  136. Engeli S, Bohnke J, Feldpausch M, et al. Regulation of 11beta-HSD genes in human adipose tissue: influence of central obesity and weight loss. Obes Res. 2004;12:9–17.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to He-Feng Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Huang, HF., Jin, M., Lin, XH. (2014). Gamete/Embryo-Fetal Origins of Obesity. In: Huang, HF., Sheng, JZ. (eds) Gamete and Embryo-fetal Origins of Adult Diseases. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7772-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7772-9_7

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7771-2

  • Online ISBN: 978-94-007-7772-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics