Skip to main content

Assisted Reproductive Technology and Gamete/Embryo-Fetal Origins of Diseases

  • Chapter
  • First Online:

Abstract

Suboptimal intrauterine conditions may produce small for gestational age (SGA), and low birth weight (LBW) babies, that are predisposed to develop cardiovascular and metabolic disease in later life [1]. During assisted reproductive technology (ART) treatment, gametes and zygotes are exposed to a series of non-physiological processes and culture media with increasing evidence that offspring of ART have increasing chances of being low birth weight. An increasing incidence of early-onset hypertension has also been reported in the population of ART offspring. It is therefore important to understand whether ART plays any specific role in disadvantaging a fetus, and, whether any such disadvantage carries long-term consequences.

Methylation of imprinted genes is erased and reestablished during gametogenesis, and, maintained throughout pre- and post-implantation development. Sequence-specific DNA hypomethylation frequently occurs in human sperm in compromised spermatogenesis. Transmission of sperm and oocyte DNA methylation defects occurs, though may be prevented by selection of gametes for ART, or, non-viability of the resulting embryos. In vitro fertilization (IVF), oocyte in vitro maturation (IVM), intracytoplasmic sperm injection (ICSI) and preimplantation genetic diagnosis (PGD) manipulate gametes and embryo at a time that is important for methylation reprogramming, and, may influence epigenetic stability leading to increased risks of adult diseases. Aspects of subfertility may also pose a risk factor for imprinting diseases. In this chapter, we will discuss the evidence related to assisted reproductive technology and embryo-fetal origins of diseases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Motrenko T. Embryo-fetal origin of diseases – new approach on epigenetic reprogramming. Arch Perinat Med. 2010;6:11–5.

    Google Scholar 

  2. Savage T, Peek J, Hofman PL, et al. Childhood outcomes of assisted reproductive technology. Hum Reprod. 2011;26:2392–400.

    PubMed  Google Scholar 

  3. Ludwig AK, Sutcliffe AG, Diedrich K, et al. Post-neonatal health and development of children born after assisted reproduction: a systematic review of controlled studies. Eur J Obstet Gynecol Reprod Biol. 2006;127:3–25.

    CAS  PubMed  Google Scholar 

  4. Cetin I, Cozzi V, Antonazzo P. Fetal development after assisted reproduction – a review. Placenta. 2003;24:S104–13.

    PubMed  Google Scholar 

  5. Ceelen M, van Weissenbruch MM, Vermeiden JP, et al. Growth and development of children born after in vitro fertilization. Fertil Steril. 2008;90:1662–73.

    PubMed  Google Scholar 

  6. Rosenwaks Z, Bendikson K. Further evidence of the safety of assisted reproductive technologies. Proc Natl Acad Sci U S A. 2007;104:5709–10.

    CAS  PubMed Central  PubMed  Google Scholar 

  7. Sutcliffe AG, Ludwig M. Outcome of assisted reproduction. Lancet. 2007;370:351–9.

    PubMed  Google Scholar 

  8. Sunderam S, Kissin DM, Flowers L, et al. Assisted reproductive technology surveillance – United States, 2009. MMWR Surveill Summ. 2012;61:1–23.

    PubMed  Google Scholar 

  9. Hazekamp J, Bergh C, Wennerholm UB, Hovatta O, et al. Avoiding multiple pregnancies in ART: consideration of new strategies. Hum Reprod. 2000;15:1217–19.

    CAS  PubMed  Google Scholar 

  10. Zhu JL, Basso O, Obel C, et al. Infertility, infertility treatment, and congenital malformations: Danish national birth cohort. BMJ. 2006;333:679.

    PubMed Central  PubMed  Google Scholar 

  11. de Mouzon J, Lancaster P, Nygren KG, et al. World collaborative report on Assisted Reproductive Technology, 2002. Hum Reprod. 2009;24:2310–20.

    PubMed  Google Scholar 

  12. Kalra SK, Molinaro TA. The association of in vitro fertilization and perinatal morbidity. Semin Reprod Med. 2008;26:423–35.

    PubMed  Google Scholar 

  13. Welmerink DB, Voigt LF, Daling JR, et al. Infertility treatment use in relation to selected adverse birth outcomes. Fertil Steril. 2010;94:2580–6.

    PubMed  Google Scholar 

  14. Steel AJ, Sutcliffe A. Long-term health implications for children conceived by IVF/ICSI. Hum Fertil (Camb). 2009;12(1):21–7.

    Google Scholar 

  15. Diaz-Garcia C, Estella C, Perales-Puchalt A, et al. Reproductive medicine and inheritance of infertility by offspring: the role of fetal programming. Fertil Steril. 2011;96:536–45.

    PubMed  Google Scholar 

  16. Romundstad LB, Romundstad PR, Sunde A, et al. Effects of technology or maternal factors on perinatal outcome after assisted fertilisation: a population-based cohort study. Lancet. 2008;372:737–43.

    PubMed  Google Scholar 

  17. Basatemur E, Sutcliffe A. Follow-up of children born after ART. Placenta. 2008;29:135–40.

    PubMed  Google Scholar 

  18. Lidegaard O, Pinborg A, Andersen AN. Imprinting diseases and IVF: Danish National IVF cohort study. Hum Reprod. 2005;20:950–4.

    PubMed  Google Scholar 

  19. Stromberg B, Dahlquist G, Ericson A, et al. Neurological sequelae in children born after in-vitro fertilisation: a population-based study. Lancet. 2002;359:461–5.

    CAS  PubMed  Google Scholar 

  20. Middelburg KJ, Haadsma ML, Heineman MJ, et al. Ovarian hyperstimulation and the in vitro fertilization procedure do not influence early neuromotor development; a history of subfertility does. Fertil Steril. 2010;93:544–53.

    PubMed  Google Scholar 

  21. Kramer S, Ward E, Meadows AT, et al. Medical and drug risk factors associated with neuroblastoma: a case–control study. J Natl Cancer Inst. 1987;78:797–804.

    CAS  PubMed  Google Scholar 

  22. Skora D, Frankfurter D. Adverse perinatal events associated with ART. Semin Reprod Med. 2012;30:84–91.

    CAS  PubMed  Google Scholar 

  23. Moll AC, Imhof SM, Cruysberg JR, et al. Incidence of retinoblastoma in children born after in-vitro fertilisation. Lancet. 2003;361:309–10.

    PubMed  Google Scholar 

  24. Bruinsma F, Venn A, Lancaster P, et al. Incidence of cancer in children born after in-vitro fertilization. Hum Reprod. 2000;15:604–7.

    CAS  PubMed  Google Scholar 

  25. Vulliemoz NR, McVeigh E, Kurinczuk J. In vitro fertilisation: perinatal risks and early childhood outcomes. Hum Fertil (Camb). 2012;15:62–8.

    CAS  Google Scholar 

  26. Wen J, Jiang J, Ding C, et al. Birth defects in children conceived by in vitro fertilization and intracytoplasmic sperm injection: a meta-analysis. Fertil Steril. 2012;97:1331–7. e1–4.

    PubMed  Google Scholar 

  27. Bukulmez O. Does assisted reproductive technology cause birth defects. Curr Opin Obstet Gynecol. 2009;21:260–4.

    PubMed  Google Scholar 

  28. Davies MJ, Moore VM, Willson KJ, et al. Reproductive technologies and the risk of birth defects. N Engl J Med. 2012;366:1803–13.

    CAS  PubMed  Google Scholar 

  29. Odom LN, Segars J. Imprinting disorders and assisted reproductive technology. Curr Opin Endocrinol Diabetes Obes. 2010;17:517–22.

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Eroglu A, Layman LC. Role of ART in imprinting disorders. Semin Reprod Med. 2012;30:92–104.

    CAS  PubMed  Google Scholar 

  31. Kuentz P, Bailly A, Faure AC, et al. Child with Beckwith-Wiedemann syndrome born after assisted reproductive techniques to an human immunodeficiency virus serodiscordant couple. Fertil Steril. 2011;96:e35–8.

    PubMed  Google Scholar 

  32. Choufani S, Shuman C, Weksberg R. Beckwith-Wiedemann syndrome. Am J Med Genet C Semin Med Genet. 2010;154C:343–54.

    CAS  PubMed  Google Scholar 

  33. Manipalviratn S, DeCherney A, Segars J. Imprinting disorders and assisted reproductive technology. Fertil Steril. 2009;91:305–15.

    CAS  PubMed Central  PubMed  Google Scholar 

  34. Owen CM, Segars Jr JH. Imprinting disorders and assisted reproductive technology. Semin Reprod Med. 2009;27:417–28.

    CAS  PubMed Central  PubMed  Google Scholar 

  35. Fortier AL, Lopes FL, Darricarrere N, et al. Superovulation alters the expression of imprinted genes in the midgestation mouse placenta. Hum Mol Genet. 2008;17:1653–65.

    CAS  PubMed  Google Scholar 

  36. Stouder C, Deutsch S, Paoloni-Giacobino A. Superovulation in mice alters the methylation pattern of imprinted genes in the sperm of the offspring. Reprod Toxicol. 2009;28:536–41.

    CAS  PubMed  Google Scholar 

  37. Market-Velker BA, Zhang L, Magri LS, et al. Dual effects of superovulation: loss of maternal and paternal imprinted methylation in a dose-dependent manner. Hum Mol Genet. 2010;19:36–51.

    CAS  PubMed  Google Scholar 

  38. Wilkins-Haug L. Assisted reproductive technology, congenital malformations, and epigenetic disease. Clin Obstet Gynecol. 2008;51:96–105.

    PubMed  Google Scholar 

  39. Marchesi DE, Qiao J, Feng HL. Embryo manipulation and imprinting. Semin Reprod Med. 2012;30:323–34.

    CAS  PubMed  Google Scholar 

  40. Gilchrist RB. Recent insights into oocyte-follicle cell interactions provide opportunities for the development of new approaches to in vitro maturation. Reprod Fertil Dev. 2011;23:23–31.

    PubMed  Google Scholar 

  41. Son WY, Tan SL. Laboratory and embryological aspects of hCG-primed in vitro maturation cycles for patients with polycystic ovaries. Hum Reprod Update. 2010;16:675–89.

    CAS  PubMed  Google Scholar 

  42. Suikkari AM. In-vitro maturation: its role in fertility treatment. Curr Opin Obstet Gynecol. 2008;20:242–8.

    PubMed  Google Scholar 

  43. Sutton ML, Gilchrist RB, Thompson JG. Effects of in-vivo and in-vitro environments on the metabolism of the cumulus-oocyte complex and its influence on oocyte developmental capacity. Hum Reprod Update. 2003;9:35–48.

    CAS  PubMed  Google Scholar 

  44. Merriman JA, Whittingham DG, Carroll J. The effect of follicle stimulating hormone and epidermal growth factor on the developmental capacity of in-vitro matured mouse oocytes. Hum Reprod. 1998;13:690–5.

    CAS  PubMed  Google Scholar 

  45. Vanderhyden BC, Armstrong DT. Role of cumulus cells and serum on the in vitro maturation, fertilization, and subsequent development of rat oocytes. Biol Reprod. 1989;40:720–8.

    CAS  PubMed  Google Scholar 

  46. Singh J, Adams GP, Pierson RA. Promise of new imaging technologies for assessing ovarian function. Anim Reprod Sci. 2003;78:371–99.

    PubMed Central  PubMed  Google Scholar 

  47. Ye J, Campbell KH, Craigon J, et al. Dynamic changes in meiotic progression and improvement of developmental competence of pig oocytes in vitro by follicle-stimulating hormone and cycloheximide. Biol Reprod. 2005;72:399–406.

    CAS  PubMed  Google Scholar 

  48. Lin YH, Hwang JL. In vitro maturation of human oocytes. Taiwan J Obstet Gynecol. 2006;45:95–9.

    PubMed  Google Scholar 

  49. Cha KY, Chung HM, Lee DR, et al. Obstetric outcome of patients with polycystic ovary syndrome treated by in vitro maturation and in vitro fertilization-embryo transfer. Fertil Steril. 2005;83:1461–5.

    PubMed  Google Scholar 

  50. Holzer H, Scharf E, Chian RC, et al. In vitro maturation of oocytes collected from unstimulated ovaries for oocyte donation. Fertil Steril. 2007;88:62–7.

    PubMed  Google Scholar 

  51. Li Y, Feng HL, Cao YJ, et al. Confocal microscopic analysis of the spindle and chromosome configurations of human oocytes matured in vitro. Fertil Steril. 2006;85:827–32.

    PubMed  Google Scholar 

  52. Shu-Chi M, Jiann-Loung H, Yu-Hung L, et al. Growth and development of children conceived by in-vitro maturation of human oocytes. Early Hum Dev. 2006;82:677–82.

    PubMed  Google Scholar 

  53. Trounson A, Wood C, Kausche A. In vitro maturation and the fertilization and developmental competence of oocytes recovered from untreated polycystic ovarian patients. Fertil Steril. 1994;62:353–62.

    CAS  PubMed  Google Scholar 

  54. Cao YX, Chian RC. Fertility preservation with immature and in vitro matured oocytes. Semin Reprod Med. 2009;27:456–64.

    PubMed  Google Scholar 

  55. Lucifero D, Chaillet JR, Trasler JM. Potential significance of genomic imprinting defects for reproduction and assisted reproductive technology. Hum Reprod Update. 2004;10:3–18.

    CAS  PubMed  Google Scholar 

  56. Palermo GD, Neri QV, Takeuchi T, et al. Genetic and epigenetic characteristics of ICSI children. Reprod Biomed Online. 2008;17:820–33.

    PubMed  Google Scholar 

  57. Price TM, Murphy SK, Younglai EV. Perspectives: the possible influence of assisted reproductive technologies on transgenerational reproductive effects of environmental endocrine disruptors. Toxicol Sci. 2007;96:218–26.

    CAS  PubMed  Google Scholar 

  58. Palermo GD, Neri QV, Takeuchi T, et al. ICSI: where we have been and where we are going. Semin Reprod Med. 2009;27:191–201.

    PubMed  Google Scholar 

  59. Fulka H, Fulka Jr J. No differences in the DNA methylation pattern in mouse zygotes produced in vivo, in vitro, or by intracytoplasmic sperm injection. Fertil Steril. 2006;86:1534–6.

    PubMed  Google Scholar 

  60. Santos F, Hyslop L, Stojkovic P, et al. Evaluation of epigenetic marks in human embryos derived from IVF and ICSI. Hum Reprod. 2010;25:2387–95.

    CAS  PubMed  Google Scholar 

  61. Tierling S, Souren NY, Gries J, et al. Assisted reproductive technologies do not enhance the variability of DNA methylation imprints in human. J Med Genet. 2010;47:371–6.

    CAS  PubMed  Google Scholar 

  62. Feng C, Tian S, Zhang Y, et al. General imprinting status is stable in assisted reproduction-conceived offspring. Fertil Steril. 2011;96:1417–1423.e9.

    CAS  PubMed  Google Scholar 

  63. de Waal E, Yamazaki Y, Ingale P, et al. Gonadotropin stimulation contributes to an increased incidence of epimutations in ICSI-derived mice. Hum Mol Genet. 2012;21:4460–72.

    PubMed Central  PubMed  Google Scholar 

  64. Dommering CJ, van der Hout AH, Meijers-Heijboer H, Marees T, Moll AC. IVF and retinoblastoma revisited. Fertil Steril. 2012;97(1):79–81.

    PubMed  Google Scholar 

  65. Alukal JP, Lamb DJ. Intracytoplasmic sperm injection (ICSI) – what are the risks. Urol Clin North Am. 2008;35:277–88. Ix–x.

    PubMed Central  PubMed  Google Scholar 

  66. Bowen JR, Gibson FL, Leslie GI, et al. Medical and developmental outcome at 1 year for children conceived by intracytoplasmic sperm injection. Lancet. 1998;351:1529–34.

    CAS  PubMed  Google Scholar 

  67. Sutcliffe AG, Taylor B, Saunders K, et al. Outcome in the second year of life after in-vitro fertilisation by intracytoplasmic sperm injection: a UK case-control study. Lancet. 2001;357:2080–4.

    CAS  PubMed  Google Scholar 

  68. Bonduelle M, Wennerholm UB, Loft A, et al. A multi-centre cohort study of the physical health of 5-year-old children conceived after intracytoplasmic sperm injection, in vitro fertilization and natural conception. Hum Reprod. 2005;20:413–19.

    CAS  PubMed  Google Scholar 

  69. Rajender S, Avery K, Agarwal A. Epigenetics, spermatogenesis and male infertility. Mutat Res. 2011;727:62–71.

    CAS  PubMed  Google Scholar 

  70. Aitken RJ, De Iuliis GN. Origins and consequences of DNA damage in male germ cells. Reprod Biomed Online. 2007;14:727–33.

    CAS  PubMed  Google Scholar 

  71. Avendano C, Franchi A, Taylor S, et al. Fragmentation of DNA in morphologically normal human spermatozoa. Fertil Steril. 2009;91:1077–84.

    PubMed  Google Scholar 

  72. Avendano C, Franchi A, Duran H, et al. DNA fragmentation of normal spermatozoa negatively impacts embryo quality and intracytoplasmic sperm injection outcome. Fertil Steril. 2010;94:549–57.

    PubMed  Google Scholar 

  73. Fernandez-Gonzalez R, Moreira PN, Perez-Crespo M, et al. Long-term effects of mouse intracytoplasmic sperm injection with DNA-fragmented sperm on health and behavior of adult offspring. Biol Reprod. 2008;78:761–72.

    CAS  PubMed  Google Scholar 

  74. Fatehi AN, Bevers MM, Schoevers E, et al. DNA damage in bovine sperm does not block fertilization and early embryonic development but induces apoptosis after the first cleavages. J Androl. 2006;27:176–88.

    CAS  PubMed  Google Scholar 

  75. Woldringh GH, Besselink DE, Tillema AH, et al. Karyotyping, congenital anomalies and follow-up of children after intracytoplasmic sperm injection with non-ejaculated sperm: a systematic review. Hum Reprod Update. 2010;16:12–9.

    CAS  PubMed  Google Scholar 

  76. Paoloni-Giacobino A. Implications of reproductive technologies for birth and developmental outcomes: imprinting defects and beyond. Expert Rev Mol Med. 2006;8:1–14.

    PubMed  Google Scholar 

  77. Sutcliffe AG, Manning JT, Katalanic A, et al. Perturbations in finger length and digit ratio (2D:4D) in ICSI children. Reprod Biomed Online. 2010;20:138–43.

    CAS  PubMed  Google Scholar 

  78. van der Heijden GW, van den Berg IM, Baart EB, et al. Parental origin of chromatin in human monopronuclear zygotes revealed by asymmetric histone methylation patterns, differs between IVF and ICSI. Mol Reprod Dev. 2009;76:101–8.

    PubMed  Google Scholar 

  79. Qiao J, Chen Y, Yan LY, et al. Changes in histone methylation during human oocyte maturation and IVF- or ICSI-derived embryo development. Fertil Steril. 2010;93:1628–36.

    CAS  PubMed  Google Scholar 

  80. Yoshizawa Y, Kato M, Hirabayashi M, et al. Impaired active demethylation of the paternal genome in pronuclear-stage rat zygotes produced by in vitro fertilization or intracytoplasmic sperm injection. Mol Reprod Dev. 2010;77:69–75.

    CAS  PubMed  Google Scholar 

  81. Ajduk A, Yamauchi Y, Ward MA. Sperm chromatin remodeling after intracytoplasmic sperm injection differs from that of in vitro fertilization. Biol Reprod. 2006;75:442–51.

    CAS  PubMed  Google Scholar 

  82. Zhang YL, Chen T, Jiang Y, et al. Active demethylation of individual genes in intracytoplasmic sperm injection rabbit embryos. Mol Reprod Dev. 2005;72:530–3.

    CAS  PubMed  Google Scholar 

  83. Perry AC, Wakayama T, Kishikawa H, et al. Mammalian transgenesis by intracytoplasmic sperm injection. Science. 1999;284:1180–3.

    CAS  PubMed  Google Scholar 

  84. Chan AW, Luetjens CM, Dominko T, et al. Foreign DNA transmission by ICSI: injection of spermatozoa bound with exogenous DNA results in embryonic GFP expression and live rhesus monkey births. Mol Hum Reprod. 2000;6:26–33.

    CAS  PubMed  Google Scholar 

  85. Moreira PN, Fernandez-Gonzalez R, Rizos D, et al. Inadvertent transgenesis by conventional ICSI in mice. Hum Reprod. 2005;20:3313–17.

    PubMed  Google Scholar 

  86. Ronquist GK, Larsson A, Ronquist G, et al. Prostasomal DNA characterization and transfer into human sperm. Mol Reprod Dev. 2011;78:467–76.

    CAS  PubMed  Google Scholar 

  87. de Waal E, Yamazaki Y, Ingale P, et al. Primary epimutations introduced during intracytoplasmic sperm injection (ICSI) are corrected by germline-specific epigenetic reprogramming. Proc Natl Acad Sci U S A. 2012;109:4163–8.

    PubMed Central  PubMed  Google Scholar 

  88. Ciapa B, Arnoult C. Could modifications of signalling pathways activated after ICSI induce a potential risk of epigenetic defects. Int J Dev Biol. 2011;55:143–52.

    CAS  PubMed  Google Scholar 

  89. Zechner U, Pliushch G, Schneider E, et al. Quantitative methylation analysis of developmentally important genes in human pregnancy losses after ART and spontaneous conception. Mol Hum Reprod. 2010;16:704–13.

    CAS  PubMed  Google Scholar 

  90. Okamoto I, Otte AP, Allis CD, et al. Epigenetic dynamics of imprinted X inactivation during early mouse development. Science. 2004;303:644–9.

    CAS  PubMed  Google Scholar 

  91. Staessen C, Verpoest W, Donoso P, et al. Preimplantation genetic screening does not improve delivery rate in women under the age of 36 following single-embryo transfer. Hum Reprod. 2008;23:2818–25.

    CAS  PubMed  Google Scholar 

  92. Mastenbroek S, Twisk M, van Echten-Arends J, et al. In vitro fertilization with preimplantation genetic screening. N Engl J Med. 2007;357:9–17.

    CAS  PubMed  Google Scholar 

  93. Duncan FE, Stein P, Williams CJ, et al. The effect of blastomere biopsy on preimplantation mouse embryo development and global gene expression. Fertil Steril. 2009;91:1462–5.

    PubMed Central  PubMed  Google Scholar 

  94. Yu Y, Wu J, Fan Y, et al. Evaluation of blastomere biopsy using a mouse model indicates the potential high risk of neurodegenerative disorders in the offspring. Mol Cell Proteomics. 2009;8:1490–500.

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Kuleshova LL, Lopata A. Vitrification can be more favorable than slow cooling. Fertil Steril. 2002;78:449–54.

    PubMed  Google Scholar 

  96. Aflatoonian A, Oskouian H, Ahmadi S, et al. Can fresh embryo transfers be replaced by cryopreserved-thawed embryo transfers in assisted reproductive cycles? A randomized controlled trial. J Assist Reprod Genet. 2010;27:357–63.

    PubMed Central  PubMed  Google Scholar 

  97. Vutyavanich T, Sreshthaputra O, Mongkolchaipak S, et al. Slow programmable and ultra-rapid freezing of human embryos. J Obstet Gynaecol Res. 2008;34:457–63.

    PubMed  Google Scholar 

  98. Henningsen AK, Pinborg A, Lidegaard O, et al. Perinatal outcome of singleton siblings born after assisted reproductive technology and spontaneous conception: Danish national sibling-cohort study. Fertil Steril. 2011;95:959–63.

    PubMed  Google Scholar 

  99. Belva F, Henriet S, Van den Abbeel E, et al. Neonatal outcome of 937 children born after transfer of cryopreserved embryos obtained by ICSI and IVF and comparison with outcome data of fresh ICSI and IVF cycles. Hum Reprod. 2008;23:2227–38.

    CAS  PubMed  Google Scholar 

  100. Sazonova A, Kallen K, Thurin-Kjellberg A, et al. Obstetric outcome in singletons after in vitro fertilization with cryopreserved/thawed embryos. Hum Reprod. 2012;27:1343–50.

    PubMed  Google Scholar 

  101. Pinborg A, Loft A, Aaris HAK, et al. Infant outcome of 957 singletons born after frozen embryo replacement: the Danish National Cohort Study 1995–2006. Fertil Steril. 2010;94:1320–7.

    PubMed  Google Scholar 

  102. Nakashima A, Araki R, Tani H, et al. Implications of assisted reproductive technologies on term singleton birth weight: an analysis of 25,777 children in the national assisted reproduction registry of Japan. Fertil Steril. 2013;99(2):450–5.

    PubMed  Google Scholar 

  103. Shih W, Rushford DD, Bourne H, et al. Factors affecting low birthweight after assisted reproduction technology: difference between transfer of fresh and cryopreserved embryos suggests an adverse effect of oocyte collection. Hum Reprod. 2008;23:1644–53.

    CAS  PubMed  Google Scholar 

  104. Kallen B, Finnstrom O, Nygren KG, et al. In vitro fertilization (IVF) in Sweden: infant outcome after different IVF fertilization methods. Fertil Steril. 2005;84:611–17.

    PubMed  Google Scholar 

  105. Nelissen EC, Van Montfoort AP, Coonen E, et al. Further evidence that culture media affect perinatal outcome: findings after transfer of fresh and cryopreserved embryos. Hum Reprod. 2012;27:1966–76.

    PubMed  Google Scholar 

  106. Wennerholm UB, Soderstrom-Anttila V, Bergh C, et al. Children born after cryopreservation of embryos or oocytes: a systematic review of outcome data. Hum Reprod. 2009;24:2158–72.

    PubMed  Google Scholar 

  107. Maheshwari A, Pandey S, Shetty A, et al. Obstetric and perinatal outcomes in singleton pregnancies resulting from the transfer of frozen thawed versus fresh embryos generated through in vitro fertilization treatment: a systematic review and meta-analysis. Fertil Steril. 2012;98:368–77. e1-9.

    PubMed  Google Scholar 

  108. Basso O, Baird DD. Infertility and preterm delivery, birthweight, and Caesarean section: a study within the Danish National Birth Cohort. Hum Reprod. 2003;18:2478–84.

    PubMed  Google Scholar 

  109. Luke B, Brown MB, Grainger DA, et al. The sex ratio of singleton offspring in assisted-conception pregnancies. Fertil Steril. 2009;92:1579–85.

    PubMed  Google Scholar 

  110. Fedder J, Gabrielsen A, Humaidan P, et al. Malformation rate and sex ratio in 412 children conceived with epididymal or testicular sperm. Hum Reprod. 2007;22:1080–5.

    PubMed  Google Scholar 

  111. Rubessa M, Boccia L, Campanile G, et al. Effect of energy source during culture on in vitro embryo development, resistance to cryopreservation and sex ratio. Theriogenology. 2011;76:1347–55.

    PubMed  Google Scholar 

  112. Lin PY, Huang FJ, Kung FT, et al. Comparison of the offspring sex ratio between fresh and vitrification-thawed blastocyst transfer. Fertil Steril. 2009;92:1764–6.

    PubMed  Google Scholar 

  113. Nakajo Y, Fukunaga N, Fuchinoue K, et al. Physical and mental development of children after in vitro fertilization and embryo transfer. Reprod Med Biol. 2004;3:63–7.

    Google Scholar 

  114. Olson CK, Keppler-Noreuil KM, Romitti PA, et al. In vitro fertilization is associated with an increase in major birth defects. Fertil Steril. 2005;84:1308–15.

    PubMed  Google Scholar 

  115. Cobo A, Diaz C. Clinical application of oocyte vitrification: a systematic review and meta-analysis of randomized controlled trials. Fertil Steril. 2011;96:277–85.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Min Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zhu, YM., Hu, XL., Wu, YT., Feng, C., Huang, HF. (2014). Assisted Reproductive Technology and Gamete/Embryo-Fetal Origins of Diseases. In: Huang, HF., Sheng, JZ. (eds) Gamete and Embryo-fetal Origins of Adult Diseases. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7772-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7772-9_10

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7771-2

  • Online ISBN: 978-94-007-7772-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics