Skip to main content

Fluid–Structure Interaction Modeling of Patient-Specific Cerebral Aneurysms

  • Chapter
  • First Online:
Visualization and Simulation of Complex Flows in Biomedical Engineering

Part of the book series: Lecture Notes in Computational Vision and Biomechanics ((LNCVB,volume 12))

Abstract

We provide an overview of the special techniques developed earlier by the Team for Advanced Flow Simulation and Modeling (T★AFSM) for fluid–structure interaction (FSI) modeling of patient-specific cerebral aneurysms. The core FSI techniques are the Deforming-Spatial-Domain/Stabilized Space–Time formulation and the stabilized space–time FSI technique. The special techniques include techniques for calculating an estimated zero-pressure arterial geometry, a special mapping technique for specifying the velocity profile at an inflow boundary with non-circular shape, techniques for using variable arterial wall thickness, mesh generation techniques for building layers of refined fluid mechanics mesh near the arterial walls, a recipe for pre-FSI computations that improve the convergence of the FSI computations, techniques for calculation of the wall shear stress and oscillatory shear index, and arterial-surface extraction and boundary condition techniques. We show, with results from earlier computations, how these techniques work. We also describe the arterial FSI techniques developed and implemented recently by the T★AFSM and present a sample from a wide set of patient-specific cerebral-aneurysm models we computed recently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In some cases where the outflow diameters significantly differ, the solution obtained from the Laplace’s equation for shrinking amount and wall thickness for the aneurysm/bifurcation area could have an undesirable distribution. The need for specifying values at a set of inter-patch points comes from seeking a better distribution in that area.

References

  • Bazilevs Y, Hsu M-C, Benson D, Sankaran S, Marsden A (2009) Computational fluid–structure interaction: methods and application to a total cavopulmonary connection. Comput Mech 45:77–89

    Article  MathSciNet  MATH  Google Scholar 

  • Bazilevs Y, Hsu M-C, Zhang Y, Wang W, Kvamsdal T, Hentschel S, Isaksen J (2010) Computational fluid–structure interaction: methods and application to cerebral aneurysms. Biomech Model Mechanobiol 9:481–498

    Article  Google Scholar 

  • Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput Methods Appl Mech Eng 32:199–259

    Article  MathSciNet  MATH  Google Scholar 

  • Frank O (1899) Die grundform des arteriellen pulses. Zeitung fur Biologie 37:483–586

    Google Scholar 

  • Green AE, Naghdi PM (1976) A derivation of equations for wave propagation in water of variable depth. J Fluid Mech 78:237–246

    Article  MATH  Google Scholar 

  • Huang H, Virmani R, Younis H, Burke AP, Kamm RD, Lee RT (2001) The impact of calcification on the biomechanical stability of atherosclerotic plaques. Circulation 103:1051–1056

    Article  Google Scholar 

  • Hughes TJR, Liu WK, Zimmermann TK (1981) Lagrangian–Eulerian finite element formulation for incompressible viscous flows. Comput Methods Appl Mech Eng 29:329–349

    Article  MathSciNet  MATH  Google Scholar 

  • Johnson AA, Tezduyar TE (1994) Mesh update strategies in parallel finite element computations of flow problems with moving boundaries and interfaces. Comput Methods Appl Mech Eng 119:73–94

    Article  MATH  Google Scholar 

  • McPhail T, Warren J (2008) An interactive editor for deforming volumetric data. International conference on biomedical engineering 2008, Singapore, pp 137–144

    Google Scholar 

  • Saad Y, Schultz M (1986) GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems. SIAM J Sci Stat Comput 7:856–869

    Article  MathSciNet  MATH  Google Scholar 

  • Takizawa K, Brummer T, Tezduyar TE, Chen PR (2012) A comparative study based on patient-specific fluid–structure interaction modeling of cerebral aneurysms. J Appl Mech 79:010908

    Article  Google Scholar 

  • Takizawa K, Christopher J, Tezduyar TE, Sathe S (2010a) Space–time finite element computation of arterial fluid–structure interactions with patientspecific data. Int J Numer Methods Biomed Eng 26:101–116

    Article  MATH  Google Scholar 

  • Takizawa K, Moorman C, Wright S, Christopher J, Tezduyar TE (2010b) Wall shear stress calculations in space–time finite element computation of arterial fluid–structure interactions. Comput Mech 46:31–41

    Article  MathSciNet  MATH  Google Scholar 

  • Takizawa K, Moorman C, Wright S, Purdue J, McPhail T, Chen PR, Warren J, Tezduyar TE (2011) Patient-specific arterial fluid–structure interaction modeling of cerebral aneurysms. Int J Numer Meth Fluids 65:308–323

    Article  MATH  Google Scholar 

  • Taylor CA, Hughes TJR, Zarins CK (1998) Finite element modeling of three-dimensional pulsatile flow in the abdominal aorta: relevance to atherosclerosis. Ann Biomed Eng 158:975–987

    Article  MathSciNet  Google Scholar 

  • Tezduyar T, Aliabadi S, Behr M, Johnson A, Mittal S (1993) Parallel finite-element computation of 3D flows. Computer 26(10):27–36

    Article  Google Scholar 

  • Tezduyar TE (1992) Stabilized finite element formulations for incompressible flow computations. Adv Appl Mech 28:1–44

    Article  MathSciNet  MATH  Google Scholar 

  • Tezduyar TE (2004) Finite element methods for fluid dynamics with moving boundaries and interfaces. In: Stein E, Borst RD, Hughes TJR (eds) Encyclopedia of computational mechanics, vol 3: Fluids, Chap. 17. John Wiley & Sons, New York

    Google Scholar 

  • Tezduyar TE, Cragin T, Sathe S, Nanna B (2007a) FSI computations in arterial fluid mechanics with estimated zero-pressure arterial geometry. In: Onate E, Garcia J, Bergan P, Kvamsdal T (eds) Marine 2007. CIMNE, Barcelona

    Google Scholar 

  • Tezduyar TE, Sathe S (2007) Modeling of fluid–structure interactions with the space–time finite elements: Solution techniques. Int J Numer Meth Fluids 54:855–900

    Article  MathSciNet  MATH  Google Scholar 

  • Tezduyar TE, Sathe S, Cragin T, Nanna B, Conklin BS, Pausewang J, Schwaab M (2007b) Modeling of fluid–structure interactions with the space–time finite elements: arterial fluid mechanics. Int J Numer Meth Fluids 54:901–922

    Article  MathSciNet  MATH  Google Scholar 

  • Tezduyar TE, Sathe S, Keedy R, Stein K (2006) Space–time finite element techniques for computation of fluid–structure interactions. Comput Methods Appl Mech Eng 195:2002–2027

    Article  MathSciNet  MATH  Google Scholar 

  • Tezduyar TE, Sathe S, Schwaab M, Conklin BS (2008) Arterial fluid mechanics modeling with the stabilized space–time fluid–structure interaction technique. Int J Numer Meth Fluids 57:601–629

    Article  MathSciNet  MATH  Google Scholar 

  • Tezduyar TE, Schwaab M, Sathe S (2007c) Arterial fluid mechanics with the sequentially-coupled arterial FSI technique. In: Onate E, Papadrakakis M, Schrefler B (eds) Coupled problems 2007. CIMNE, Barcelona

    Google Scholar 

  • Tezduyar TE, Schwaab M, Sathe S (2009) Sequentially-coupled arterial fluid–structure interaction (SCAFSI) technique. Comput Methods Appl Mech Eng 198:3524–3533

    Article  MathSciNet  MATH  Google Scholar 

  • Tezduyar TE, Takizawa K, Brummer T, Chen PR (2011) Space–time fluid–structure interaction modeling of patient-specific cerebral aneurysms. Int J Numer Methods Biomed Eng 27:1665–1710

    Article  MathSciNet  MATH  Google Scholar 

  • Tezduyar TE, Takizawa K, Moorman C, Wright S, Christopher J (2010) Multiscale sequentially-coupled arterial FSI technique. Comput Mech 46:17–29

    Article  MathSciNet  MATH  Google Scholar 

  • Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2004) Influence of wall elasticity on image-based blood flow simulation. Jpn Soc Mech Eng J A 70:1224–1231 (in Japanese)

    Google Scholar 

  • Torii R, Oshima M, Kobayashi T, Takagi K, Tezduyar TE (2011) Influencing factors in image-based fluid–structure interaction computation of cerebral aneurysms. Int J Numer Meth Fluids 65:324–340

    Article  MATH  Google Scholar 

  • Womersley JR (1955) Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J Physiol 127:553–563

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by a seed grant from the Gulf Coast Center for Computational Cancer Research funded by John & Ann Doerr Fund for Computational Biomedicine. It was also supported in part by the Rice Computational Research Cluster funded by NSF Grant CNS-0821727. The 3DRA research at the Memorial Hermann Hospital University of Texas Medical School at Houston was supported by generous a funding from the Weatherhead Foundation. We thank Dr. Ryo Torii (University College London) for the inflow velocity data used in the computations and the arterial geometry used in Sect. 6.1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Takizawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Takizawa, K., Tezduyar, T.E. (2014). Fluid–Structure Interaction Modeling of Patient-Specific Cerebral Aneurysms. In: Lima, R., Imai, Y., Ishikawa, T., Oliveira, M. (eds) Visualization and Simulation of Complex Flows in Biomedical Engineering. Lecture Notes in Computational Vision and Biomechanics, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7769-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7769-9_2

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7768-2

  • Online ISBN: 978-94-007-7769-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics