Skip to main content

Flow on the Surface of the Tracheal Lumen by Ciliary Motion of Asymmetric Axonemal Structures

  • Chapter
  • First Online:
Visualization and Simulation of Complex Flows in Biomedical Engineering

Part of the book series: Lecture Notes in Computational Vision and Biomechanics ((LNCVB,volume 12))

  • 1478 Accesses

Abstract

Recently, advances in optics and digital image processing techniques have been accompanied by an improvement in the visualization of biologically complex flow by using fluorescent particles, such as particle image velocimetry (PIV) and particle tracking velocimetry (PTV). In addition, visualization of cellular ultrastructure using cryoelectron tomography has revealed the structural arrangements of cytoskeletal complexes and macromolecules in intracellular membranes and organelles. In this chapter, we focus on cilia-generated directional flow. Many eukaryotic cells have developed cilia, an organelle present on cell surfaces that enables motion and generates fluid flow on the cell surface. The complex flow and axonemal structure in mouse airways were previously not well understood. Here, we describe the flow field generated by asymmetric ciliary motion on the surface of sparsely distributed ciliated cells in mouse tracheal epithelial cells by the μ-PIV/PTV method. Moreover, we describe the axonemal structure of respiratory cilia by using data from cryoelectron tomography and image processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

MT:

Microtubule

PCL:

Periciliary liquid layer

IDA:

Inner dynein arm

μ-PTV:

Micro-particle tracking velocimetry

μ-PIV:

Micro-particle image velocimetry

CF:

Cystic fibrosis

COPD:

Chronic obstructive pulmonary disorder

QDs:

Quantum dots

CCD:

Charge-coupled device

EMCCD:

Electron multiplier type CCD camera

PBS:

Phosphate buffered saline

ODA:

Outer dynein arm

DRC:

Dynein regulatory complex

IC:

Intermediate chain

References

  • Afzelius BA (1976) A human syndrome caused by immotile cilia. Science 193(4250):317–319

    Article  Google Scholar 

  • Bui KH, Sakakibara H, Movassagh T, Oiwa K, Ishikawa T (2008) Molecular architecture of inner dynein arms in situ in Chlamydomonas reinhardtii flagella. J Cell Biol 183(5):923–932

    Article  Google Scholar 

  • Bui KH, Sakakibara H, Movassagh T, Oiwa K, Ishikawa T (2009) Asymmetry of inner dynein arms and inter-doublet links in Chlamydomonas flagella. J Cell Biol 186(3):437–446

    Article  Google Scholar 

  • Bui KH, Yagi T, Yamamoto R, Kamiya R, Ishikawa T (2012) Polarity and asymmetry in the arrangement of dynein and related structures in the Chlamydomonas axoneme. J Cell Biol 198(5):913–925

    Article  Google Scholar 

  • Daviskas E, Anderson SD, Young IH (2007) Inhaled mannitol changes the sputum properties in asthmatics with mucus hypersecretion. Respirology 12(5):683–691

    Article  Google Scholar 

  • Dirksen ER, Satir P (1972) Ciliary activity in the mouse oviduct as studied by transmission and scanning electron microscopy. Tissue Cell 4(3):389–403

    Article  Google Scholar 

  • Drescher K, Goldstein RE, Michel N, Polin M, Tuval I (2010) Direct measurement of the flow field around swimming microorganisms. Phys Rev Lett 105(16):168101

    Article  Google Scholar 

  • Fliegauf M, Olbrich H, Horvath J, Wildhaber JH, Zariwala MA, Kennedy M, Knowles MR, Omran H (2005) Mislocalization of DNAH5 and DNAH9 in respiratory cells from patients with primary ciliary dyskinesia. Am J Respir Crit Care Med 171(12):1343–1349

    Article  Google Scholar 

  • Frank J, Radermacher M, Penczek P, Zhu J, Li Y, Ladjadj M, Leith A (1996) SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J Struct Biol 116(1):190–199

    Article  Google Scholar 

  • Goldstein RE, Polin M, Tuval I (2011) Emergence of synchronized beating during the regrowth of eukaryotic flagella. Phys Rev Lett 107(14):148103

    Article  Google Scholar 

  • Guasto JS, Johnson KA, Gollub JP (2010) Oscillatory flows induced by microorganisms swimming in two dimensions. Phys Rev Lett 105(16):168102

    Article  Google Scholar 

  • Gueron S, Levit-Gurevich K (1999) Energetic considerations of ciliary beating and the advantage of metachronal coordination. Proc Natl Acad Sci U S A 96(22):12240–12245

    Article  MATH  Google Scholar 

  • Guirao B, Joanny JF (2007) Spontaneous creation of macroscopic flow and metachronal waves in an array of cilia. Biophys J 92(6):1900–1917

    Article  Google Scholar 

  • Guirao B, Meunier A, Mortaud S, Aguilar A, Corsi JM, Strehl L, Hirota Y, Desoeuvre A, Boutin C, Han YG, Mirzadeh Z, Cremer H, Montcouquiol M, Sawamoto K, Spassky N (2010) Coupling between hydrodynamic forces and planar cell polarity orients mammalian motile cilia. Nat Cell Biol 12(4):341–350

    Article  Google Scholar 

  • Halbert SA, Becker DR, Szal SE (1989) Ovum transport in the rat oviductal ampulla in the absence of muscle contractility. Biol Reprod 40(6):1131–1136

    Article  Google Scholar 

  • Harold J, Hoops IN, David LK (2005) Cytoplasmic bridges in volvox and its relatives. In: Baluska F, Volkmann D, Barlow PW (eds) Cell-Cell channels. Eurekah.com, Georgetown, p 1–20

    Google Scholar 

  • Heuser T, Raytchev M, Krell J, Porter ME, Nicastro D (2009) The dynein regulatory complex is the nexin link and a major regulatory node in cilia and flagella. J Cell Biol 187(6):921–933

    Article  Google Scholar 

  • Heymann JB (2001) Bsoft: image and molecular processing in electron microscopy. J Struct Biol 133(2–3):156–169

    Article  Google Scholar 

  • Hirokawa N, Tanaka Y, Okada Y, Takeda S (2006) Nodal flow and the generation of left-right asymmetry. Cell 125(1):33–45

    Article  Google Scholar 

  • Hirota Y, Meunier A, Huang S, Shimozawa T, Yamada O, Kida YS, Inoue M, Ito T, Kato H, Sakaguchi M, Sunabori T, Nakaya MA, Nonaka S, Ogura T, Higuchi H, Okano H, Spassky N, Sawamoto K (2010) Planar polarity of multiciliated ependymal cells involves the anterior migration of basal bodies regulated by non-muscle myosin II. Development 137(18):3037–3046

    Article  Google Scholar 

  • Hoops HJ, Witman GB (1983) Outer doublet heterogeneity reveals structural polarity related to beat direction in Chlamydomonas flagella. J Cell Biol 97(3):902–908

    Article  Google Scholar 

  • Hornef N, Olbrich H, Horvath J, Zariwala MA, Fliegauf M, Loges NT, Wildhaber J, Noone PG, Kennedy M, Antonarakis SE, Blouin JL, Bartoloni L, Nusslein T, Ahrens P, Griese M, Kuhl H, Sudbrak R, Knowles MR, Reinhardt R, Omran H (2006) DNAH5 mutations are a common cause of primary ciliary dyskinesia with outer dynein arm defects. Am J Respir Crit Care Med 174(2):120–126

    Article  Google Scholar 

  • Ikegami K, Sato S, Nakamura K, Ostrowski LE, Setou M (2010) Tubulin polyglutamylation is essential for airway ciliary function through the regulation of beating asymmetry. Proc Natl Acad Sci U S A 107(23):10490–10495

    Article  Google Scholar 

  • Ishikawa T, Hota M (2006) Interaction of two swimming Paramecia. J Exp Biol 209(Pt 22):4452–4463

    Article  Google Scholar 

  • Ishikawa T, Sakakibara H, Oiwa K (2007) The architecture of outer dynein arms in situ. J Mol Biol 368(5):1249–1258

    Article  Google Scholar 

  • Jonassen JA, San Agustin J, Follit JA, Pazour GJ (2008) Deletion of IFT20 in the mouse kidney causes misorientation of the mitotic spindle and cystic kidney disease. J Cell Biol 183(3):377–384

    Article  MATH  Google Scholar 

  • Kagami O, Takada S, Kamiya R (1990) Microtubule translocation caused by three subspecies of inner-arm dynein from Chlamydomonas flagella. FEBS Lett 264(2):179–182

    Article  Google Scholar 

  • Kubo T, Yagi T, Kamiya R (2012) Tubulin polyglutamylation regulates flagellar motility by controlling a specific inner-arm dynein that interacts with the dynein regulatory complex. Cytoskeleton 179(2):222–228

    Google Scholar 

  • Kuhn C 3rd, Engleman W (1978) The structure of the tips of mammalian respiratory cilia. Cell Tissue Res 186(3):491–498

    Article  Google Scholar 

  • Kunimoto K, Yamazaki Y, Nishida T, Shinohara K, Ishikawa H, Hasegawa T, Okanoue T, Hamada H, Noda T, Tamura A, Tsukita S, Tsukita S (2012) Coordinated ciliary beating requires Odf2-mediated polarization of basal bodies via basal feet. Cell 148(1–2):189–200

    Article  Google Scholar 

  • Lai SK, Wang YY, Wirtz D, Hanes J (2009) Micro- and macrorheology of mucus. Adv Drug Deliv Rev 61(2):86–100

    Article  Google Scholar 

  • Lechtreck KF, Sanderson MJ, Witman GB (2009) High-speed digital imaging of ependymal cilia in the murine brain. Methods Cell Biol 91:255–264

    Article  Google Scholar 

  • Lucas AM, Douglas LC (1934) Principles underlying ciliary activity in the respiratory tract II. A comparison of nasal clearance in man, monkey and other mammals. Arch Otolaryngol 20(4):518–541

    Article  Google Scholar 

  • MAST, SO (1907) Light reaction in lower organisms: II. Volvox globator. J Comp Neurol Psychol 17(2): 99–180

    Google Scholar 

  • Mastronarde DN (1997) Dual-axis tomography: an approach with alignment methods that preserve resolution. J Struct Biol 120(3):343–352

    Article  Google Scholar 

  • Nicastro D, McIntosh JR, Baumeister W (2005) 3D structure of eukaryotic flagella in a quiescent state revealed by cryo-electron tomography. Proc Natl Acad Sci U S A 102(44):15889–15894

    Article  Google Scholar 

  • Niedermayer T, Eckhardt B, Lenz P (2008) Synchronization, phase locking, and metachronal wave formation in ciliary chains. Chaos 18(3):037128

    Article  MathSciNet  Google Scholar 

  • Nigg EA, Raff JW (2009) Centrioles, centrosomes, and cilia in health and disease. Cell 139(4):663–678

    Article  Google Scholar 

  • Nonaka S, Tanaka Y, Okada Y, Takeda S, Harada A, Kanai Y, Kido M, Hirokawa N (1998) Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 95(6):829–837

    Article  Google Scholar 

  • Okada Y, Nonaka S, Tanaka Y, Saijoh Y, Hamada H, Hirokawa N (1999) Abnormal nodal flow precedes situs inversus in iv and inv mice. Mol Cell 4(4):459–468

    Article  Google Scholar 

  • Olbrich H, Horvath J, Fekete A, Loges NT, Storm van’s Gravesande K, Blum A, Hormann K, Omran H (2006) Axonemal localization of the dynein component DNAH5 is not altered in secondary ciliary dyskinesia. Pediatr Res 59(3): 418–422

    Google Scholar 

  • Pazour GJ, Agrin N, Walker BL, Witman GB (2006) Identification of predicted human outer dynein arm genes: candidates for primary ciliary dyskinesia genes. J Med Genet 43(1):62–73

    Article  Google Scholar 

  • Pazour GJ, Dickert BL, Vucica Y, Seeley ES, Rosenbaum JL, Witman GB, Cole DG (2000) Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella. J Cell Biol 151(3):709–718

    Article  Google Scholar 

  • Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera–a visualization system for exploratory research and analysis. J Comput Chem 25(13):1605–1612

    Article  Google Scholar 

  • Ringo DL (1967) Flagellar motion and fine structure of the flagellar apparatus in Chlamydomonas. J Cell Biol 33(3):543–571

    Article  Google Scholar 

  • Ruffer U, Nultsch W (1985) High-speed cinematographic analysis of the movement of Chlamydomonas. Cell Motil Cytoskelet 5(3):251–263

    Article  Google Scholar 

  • Sanderson MJ, Sleigh MA (1981) Ciliary activity of cultured rabbit tracheal epithelium: beat pattern and metachrony. J Cell Sci 47:331–347

    Google Scholar 

  • Sawamoto K, Wichterle H, Gonzalez-Perez O, Cholfin JA, Yamada M, Spassky N, Murcia NS, Garcia-Verdugo JM, Marin O, Rubenstein JL, Tessier-Lavigne M, Okano H, Alvarez-Buylla A (2006) New neurons follow the flow of cerebrospinal fluid in the adult brain. Science 311(5761):629–632

    Article  Google Scholar 

  • Sugino K, Naitoh Y (1982) Simulated cross-bridge patterns corresponding to ciliary beating in Paramecium. Nature 295(5850):609–611

    Article  Google Scholar 

  • Ueki N, Matsunaga S, Inouye I, Hallmann A (2010) How 5000 independent rowers coordinate their strokes in order to row into the sunlight: phototaxis in the multicellular green alga Volvox. BMC Biol 8:103

    Article  Google Scholar 

  • Ueno H, Ishikawa T, Bui KH, Gonda K, Ishikawa T, Yamaguchi T (2012) Mouse respiratory cilia with the asymmetric axonemal structure on sparsely distributed ciliary cells can generate overall directional flow. Nanomedicine 8(7):1081–1087

    Article  Google Scholar 

  • Vilfan A, Julicher F (2006) Hydrodynamic flow patterns and synchronization of beating cilia. Phys Rev Lett 96(5):058102

    Article  Google Scholar 

  • Wloga D, Frankel J (2012) From molecules to morphology: cellular organization of Tetrahymena thermophila. Methods Cell Biol 109:83–140

    Article  Google Scholar 

  • Yagi T (2009) Bioinformatic approaches to dynein heavy chain classification. Methods Cell Biol 92:1–9

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We would like to thank Takashi Ishikawa and Khanh Huy Buy for helpful advice of cryoelectron tomography and image processing, Takuji Ishikawa and Takami Yamaguchi for discussion of ciliary flow, and Toshiki Yagi for advice of the phylogenetic analysis. We took some cryo electron microscopic images using Tecnai G3 Polara in the Medical Institute of Bioregulation, Kyushu University. This study was supported by a Grant-in-Aid for Young Scientists (B) from the JSPS (No. 24770145) to Hironori Ueno and by a Grant-in-Aid for Scientific Research on Innovative Areas ‘‘Nanomedicine Molecular Science’’ (No. 24107504) to Hironori Ueno from Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hironori Ueno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ueno, H. (2014). Flow on the Surface of the Tracheal Lumen by Ciliary Motion of Asymmetric Axonemal Structures. In: Lima, R., Imai, Y., Ishikawa, T., Oliveira, M. (eds) Visualization and Simulation of Complex Flows in Biomedical Engineering. Lecture Notes in Computational Vision and Biomechanics, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7769-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7769-9_13

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7768-2

  • Online ISBN: 978-94-007-7769-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics