Skip to main content

A Survey of Quantitative Descriptors of Arterial Flows

  • Chapter
  • First Online:
Visualization and Simulation of Complex Flows in Biomedical Engineering

Abstract

Knowledge of blood flow mechanics is a critical issue (1) for an in depth understanding of the relationships between hemodynamic factors and arterial homeostasis and (2) for the identification of those flow features that lead to changes in the function and health of vessels. While from one side there is clear evidence that regions of disrupted flow are correlated to, e.g., the localization of atherosclerosis, the development of aneurysms and non-physiological transport of species, on the opposite cause-effect links still do not emerge clearly. To allow for a more effective and valuable understanding of blood flow structures and mechanisms in complex four-dimensional cardiovascular flows, in recent years a large number of hemodynamic parameters have surfaced in the literature, enabling the understanding of arterial hemodynamics and of the role of streaming blood in the development of pathological events. In this work, a survey of the currently adopted methods to characterize blood flow structures in arteries is presented and open questions (1) on their clinical utility and (2) on the inherent limitations in their in silico and in vivo application are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Augst AD, Ariff B, Thom SA, Xu XY, Hughes AD (2007) Analysis of complex flow and the relationship between blood pressure, wall shear stress, and intima-media thickness in the human carotid artery. Am J Physiol Heart Circ Physiol 293:H1031–H1037

    Article  Google Scholar 

  • Bogren HG, Buonocore MH (1999) 4D magnetic resonance velocity mapping of blood flow patterns in the aorta in young vs. elderly normal subjects. J Magn Reson Imaging 10:861–869

    Article  Google Scholar 

  • Boussel L, Rayz V, Acevedo-Bolton G, Lawton MT, Higashida R, Smith WS, Young WL, Saloner D (2009) Phase-contrast magnetic resonance imaging measurements in intracranial aneurysms in vivo of flow patterns, velocity fields, and wall shear stress: comparison with computational fluid dynamics. Magn Reson Med 61(2):409–417

    Article  Google Scholar 

  • Buchanan JR , Kleinstreuer C (1998) Simulation of particle-hemodynamics in a partially occluded artery segment with implications to the initiation of microemboli and secondary stenoses. J Biomech Eng 120(4):446–454

    Article  Google Scholar 

  • Caro CG, Fitz GJ, Schroter RC (1969) Arterial wall shear and distribution of early atheroma in man. Nature 223:1159–1160

    Article  Google Scholar 

  • Caro CG, Fitzgerald JM, Schroter RC (1971) Atheroma and arterial wall shear stress. Observation, correlation, and proposal of a shear dependent masstransfer mechanism for atherogenesis. Proc Roy Soc B 177:109–159

    Article  Google Scholar 

  • Caro CG, Doorly DJ, Tarnawski M, Scott KT, Long Q, Dumoulin CL (1996) Non-planar curvature and branching of arteries and non-planar-type flow. Proc R Soc Lond A 452:185–197

    Article  MathSciNet  MATH  Google Scholar 

  • Caro CG, Watkins NW, Sherwin SJ, Pitt R, Giordana S, Franke PT, Peiro J, Doorly DJ, Papaharilaou Y, Chesire N, Jackson M, Bicknall C (2002) Swirling circulatory and respiratory flow: biological/pathological implications. IFMBE Proc, EMBEC 2002, I8–I16

    Google Scholar 

  • Caro CG (2009) Discovery of the role of wall shear in Atherosclerosis. Arterioscler Thromb Vasc Biol 29:158–161

    Article  Google Scholar 

  • Chen ZS, Fan YB, Deng XY, Xu Z (2009) Swirling flow can suppress flow disturbances in endovascular stents: a numerical study. Am Soc Artif Int Organ J 55(6):543–549

    Article  Google Scholar 

  • Chien S (2007) Mechanotransduction and endothelial cell homeostasis: the wisdom of the cell. Am J Physiol Heart Circ Physiol 292:H1209–H1224

    Article  Google Scholar 

  • Chiu JJ, Chien S (2011) Effects of disturbed flow on vascular endothelium: pathophysiological basis and clinical perspectives. Physiol Rev 91:327–387

    Article  Google Scholar 

  • De Bakey ME, Lawrie GM, Glaeser DH (1985) Patterns of Atherosclerosis and their Surgical Significance. Ann Surg 201:115–131

    Google Scholar 

  • De Paola N, Gimbrone MA Jr, Davies PF, Dewey CF Jr (1992) Vascular endothelium responds to fluid shear stress gradients. Arterioscler Thromb 12(11):1254–1257

    Article  Google Scholar 

  • Ditlevsen PD, Giuliani P (2000) Anomalous scaling in a shell model of helical turbulence. Phys A 280:69–74

    Article  Google Scholar 

  • Ehrlich LW, Friedman MH (1977) Particle paths and stasis in unsteady flow through a bifurcation. J Biomech 10:561–568

    Article  Google Scholar 

  • Euler L (1775) Principia pro motusanguinis per arterias determinando. Opera posthumamathematica et physica anno 1844 detecta. Ediderunt P.H. Fuss et N. Fuss Petropoli; Apund Eggers et Socios

    Google Scholar 

  • Fan Y, Xu Z, Jiang W, Deng X, Wang K, Sun A (2008) An S-type bypass can improve the hemodynamics in the bypassed arteries and suppress intimal hyperplasia along the host artery floor. J Biomech 41:2498–2505

    Article  Google Scholar 

  • Fatemi RS, Rittgers SE (1994) Derivation of shear rates from near-wall LDA measurements under steady and pulsatile flow conditions. J Biomech Eng 116(3):361–368

    Article  Google Scholar 

  • Frazin LJ, Lanza G, Vonesh M, Khasho F, Spitzzeri C, McGee S, Mehlman D, Chandran KB, Talano J, McPherson D (1990) Functional chiral asymmetry in descending thoracic aorta. Circulation 82(6):1985–1994

    Article  Google Scholar 

  • Frazin LJ, Vonesh MJ, Chandran KB, Shipkowitz T, Yaacoub AS, McPherson DD (1996) Confirmation and initial documentation of thoracic and abdominal aortic helical flow, An ultrasound study. Am Soc Artif Int Organ J 42(6):951–956

    Google Scholar 

  • Friedman MH, Hutchins GM, Bargeron CB, Deters OJ, Mark FF (1981) Correlation between intimal thickness and fluid shear in human arteries. Atheroscler 39:425–436

    Article  Google Scholar 

  • Friedman MH, Bargeron CB, Deters OJ, Hutchins GM, Mark FF (1987) Correlation between wall shear and intimal thickness at a coronary artery branch. Atheroscler 68:27–33

    Article  Google Scholar 

  • Frydrychowicz A, Franc-ois CJ, Turski PA (2011) Four-dimensional phase contrast magnetic resonance angiography: potential clinical applications. Eur J Radiol 80:24–35

    Article  Google Scholar 

  • Galbraith CG, Skalak R, Chein S (1998) Shear stress induces spatial reorganization of the endothelial cell cytoskeleton. Cell Motil Cytoskelet 40:317–330

    Article  Google Scholar 

  • Gallo D, Steinman DA, Bijari PB, Morbiducci U (2012a) Helical flow in carotid bifurcation as surrogate marker of exposure to disturbed shear. J Biomech 45(14):2398–2404

    Article  Google Scholar 

  • Gallo D, De Santis G, Negri F, Tresoldi D, Ponzini R, Massai D, Deriu MA, Segers P, Verhegghe B, Rizzo G, Morbiducci U (2012b) On the use of in vivo measured flow rates as boundary conditions for image-based hemodynamic models of the human aorta. Implications for indicators of abnormal flow. Ann Biomed Eng 40(3):729–741

    Article  Google Scholar 

  • Gelfand BD, Epstein FH, Blackman BR (2006) Spatial and spectral eterogeneity of time-varying shear stress profiles in the carotid bifurcation by PC-MRI. J Magn Reson Imaging 24(6):1386–1392

    Article  Google Scholar 

  • Giddens DP, Zarins CK, Glagov S (1993) The role of fluid mechanics in the localization and detection of atherosclerosis. J Biomech Eng 115(4B):588–595

    Article  Google Scholar 

  • Glagov S, Zarins C, Giddens DP, Ku DN (1988) Hemodynamics and atherosclerosis, insights and perspective gained from studies of human arteries. Arch Pathol Lab Med 112:1018–1029

    Google Scholar 

  • Goubergrits L, Affeld K, Fernandez-Britto J, Falcon L (2002) Atherosclerosis and flow in carotid arteries with authentic geometries. Biorheol 39(3–4):519–524

    Google Scholar 

  • Grigioni M, Daniele C, Morbiducci U, Del Gaudio C, D’Avenio G, Balducci A, Barbaro V (2005) A mathematical description of blood spiral flow in vessels: application to a numerical study of flow in arterial bending. J Biomech 38:1375–1386

    Article  Google Scholar 

  • Haller G (2001) Distinguished material surfaces and coherent structures in three-dimensional fluid flows. Phys D 149:248–277

    Article  MathSciNet  MATH  Google Scholar 

  • Harloff A, Albrecht F, Spreer J, Stalder AF, Bock J, Frydrychowicz A, Schollorn J, Hetzel A, Schumacher M, Hennig J, Markl M (2009) 3D blood flow characteristics in the carotid artery bifurcation assessed by flow-sensitive 4D MRI at 3T. Magn Reson Med 61:65–74

    Article  Google Scholar 

  • He X, Ku DN (1996) Pulsatile flow in the human left coronary artery bifurcation: average conditions. ASME J Biomech Eng 118(1):74–82

    Article  Google Scholar 

  • Himburg HA, Grzybowski DM, Hazel A, LaMack JA, Li XM, Friedman MH (2004) Spatial comparison between wall shear stress measures and porcine arterial endothelial permeability. Am J Physiol Heart Circ Physiol 286(5):H1916–H1922

    Article  Google Scholar 

  • Himburg HA, Friedman MH (2006) Correspondence of low mean shear and high harmonic content in the porcine iliac arteries. J Biomech Eng 128(6):852–856

    Article  Google Scholar 

  • Houston JG, Gandy SJ, Sheppard DG, Dick JBC, Belch JJF, Stonebridge PA (2003) Two-dimensional flow quantitative MRI of aortic arch blood flow patterns: effect of age, gender and presence of carotid atheromatous disease on the prevalence of spiral blood flow. J Magn Reson Imaging 18(2):169–174

    Article  Google Scholar 

  • Houston JG, Gandy SJ, Milne W, Dick JB, Belch JJ, Stonebridge PA (2004) Spiral laminar flow in the abdominal aorta: a predictor of renal impairment deterioration in patients with renal artery stenosis? Nephrol Dial Transplant 19(7):1786–1791

    Article  Google Scholar 

  • Hsiai TK, Cho SK, Wong PK, Ing M, Salazar A, Sevanian A, Navab M, Demer LL, Ho CM (2003) Monocyte recruitment to endothelial cells in response to oscillatory shear stress. Faseb J 17(12):1648–1657

    Article  Google Scholar 

  • Hyun S, Kleinstreuer C, Archie JP (2000) Computer simulation and geometric design of endarterectomized carotid artery bifurcations. Crit Rev Biomed Eng 28:53–59

    Article  Google Scholar 

  • Hyun S, Kleinstreuer C, Archie JP (2001) Computational particle-hemodynamics analysis and geometric reconstruction after carotid endarterectomy. Comp Biol Med 31:365–384

    Article  Google Scholar 

  • Hyun S, Kleinstreuer C, Longest PW, Chen C (2004) Particle-hemodynamics simulations and design options for surgical reconstruction of diseased carotid artery bifurcations. J Biomech Eng 126(4):118–195

    Google Scholar 

  • Karino T, Goldsmith HL (1985) Particle flow behavior in models of branching vessels. II. Effects of branching angle and diameter ratio on flow patterns. Biorheol 22:87–104

    Google Scholar 

  • Kessler M (2002) Biocompat. Nephrol Dial Transplant 17(7):32–44

    Google Scholar 

  • Keynton RS, Evancho MM, Sims RL, Rodway NV, Gobin A, Rittgers SE (2001) Intimal hyperplasia and wall shear in arterial bypass graft distal anastomoses: an in vivo model study. J Biomech Eng 123(5):464–473

    Article  Google Scholar 

  • Kilner PJ, Yang GZ, Mohiaddin RH, Firmin DN, Longmore DB (1993) Helical and retrograde secondary flow patterns in the aortic arch studied by three-directional magnetic resonance velocity mapping. Circ 88:2235–2247

    Article  Google Scholar 

  • Kleinstreuer C, Hyun S, Buchanan JR, Longest PW, Archie JP, Truskey GA (2001) Hemodynamic parameters and early intimal thickening in branching blood vessels. Crit Rev Biomed Eng 29:1–64

    Article  Google Scholar 

  • Kroll MH, Hellums JD, McIntire LV, Schafer AL, Moake JL (1996) Platelets and shear stress. Blood 88(5):1525–1541

    Google Scholar 

  • Ku DN, Giddens DP (1983) Pulsatile flow in a model carotid bifurcation. Arterioscler 3:31–39

    Article  Google Scholar 

  • Ku DN, Zarins CK, Giddens DP, Glagov S (1985) Hemodynamics of the normal human carotid bifurcation: in vitro and in vivo studies. Ultrasound Med Biol 11:13–26

    Article  Google Scholar 

  • Lee SW, Antiga L, Steinman DA (2009) Correlations among indicators of disturbed flow at the normal carotid bifurcation. J Biomech Eng 131(6):061013-1-7

    Google Scholar 

  • Liu X, Pu F, Fan Y, Deng X, Li D, Li S (2009) A numerical study on the flow of blood and the transport of LDL in the human aorta: the physiological significance of the helical flow in the aortic arch. Am J Physiol Heart Circ Physiol 297:H163–H170

    Article  Google Scholar 

  • Liu X, Fan Y, Deng X (2010) Effect of spiral flow on the transport of oxygen in the aorta: a numerical study. Ann Biomed Eng 38:917–926

    Article  Google Scholar 

  • Liu X, Fan Y, Deng X, Zhan F (2011) Effect of non-Newtonian and pulsatile blood flow on mass transport in the human aorta. J Biomech 44(6):1123–1131

    Article  Google Scholar 

  • Long DS, Smith ML, Pries RA, Ley K, Damiano ER (2004) Microviscometry reveals reduced blood viscosityand altered shear rate and shear stress profiles in microvessels after hemodilution. Proc Natl Acad Sci USA 101(27):10060–10065

    Article  Google Scholar 

  • Longest PW, Kleinstreuer C (2000) Computational haemodynamics analysis and comparison study of arterio-venous grafts. J Med Eng Technol 24(3):102–110

    Article  Google Scholar 

  • Lorenz R, Benk C, Stalder AF, Korvink JG, Hennig J, Matkl M (2012) Closed circuit MR compatible pulsatile pump system using a ventricular assist device and pressure control unit. Magn Reson Med 67:258–268

    Article  Google Scholar 

  • Ma P, Li X, Ku DN (1997) Convective mass transfer at the carotid bifurcation. J Biomech 30:565–571

    Article  Google Scholar 

  • Malek AM, Alper SL, Izumo S (1999) Hemodynamic shear stress and its role in atherosclerosis. J Am Med Ass 282:2035–2042

    Article  Google Scholar 

  • Markl M, Wegent F, Zech T, Bauer S, Strecker C, Schumacher M, Weiller C, Hennig J, Harloff A (2010) In vivo wall shear stress distribution in the carotid artery: effect of bifurcation geometry, internal carotid artery stenosis, and recanalization therapy. Circ Cardiov Imaging 3:647–655

    Article  Google Scholar 

  • Marsden AL, Feinstein JA, Taylor CA (2008) A computational framework for derivative-free optimization of cardiovascular geometries. Comp Methods Appl Mech Eng 197(21–24):1890–1905

    Article  MathSciNet  MATH  Google Scholar 

  • Massai D, Soloperto G, Gallo D, Xu XY, Morbiducci U (2012) Shear-induced platelet activation and its relationship with blood flow topology in a numerical model of stenosed carotid bifurcation. Eur J Mech-B/Fluids 35:92–101

    Article  Google Scholar 

  • Moffatt HK (1969) The degree of knottedness of tangled vortex lines. J Fluid Mech 35(1):17–29

    Article  Google Scholar 

  • Moffatt HK, Tsinober A (1992) Helicity in laminar and turbulent flow. Annu Rev Fluid Mech 24:281–312

    Article  MathSciNet  Google Scholar 

  • Moore JE Jr, Xu C, Glagov s, Zarins CK, Ku DN (1994) Fluid wall shear stress measurements in a model of the human abdominal aorta: oscillatory behavior and relationship to atherosclerosis. Atheroscler 110(2):225–240

    Google Scholar 

  • Morbiducci U, Lemma M, Ponzini R, Boi A, Bondavalli L, Antona C, Montevecchi FM, Redaelli A (2007a) Does flow dynamics of the magnetic vascular coupling for distal anastomosis in coronary artery bypass grafting contribute to the risk of graft failure? Int J Artif Organs 30:628–639

    Google Scholar 

  • Morbiducci U, Ponzini R, Grigioni M, Redaelli A (2007b) Helical flow as fluid dynamic signature for atherogenesis in aortocoronary bypass, a numeric study. J Biomech 40:519–534

    Article  Google Scholar 

  • Morbiducci U, Ponzini R, Rizzo G, Cadioli M, Esposito A, De Cobelli F, Del Maschio A, Montevecchi FM, Redaelli A (2009a) In vivo quantification of helical blood flow in human aorta by time-resolved three-dimensional cine phase contrast MRI. Ann Biomed Eng 37:516–531

    Article  Google Scholar 

  • Morbiducci U, Ponzini R, Nobili M, Massai D, Montevecchi FM, Bluestein D, Redaelli A (2009b) Blood damage safety of prosthetic heart valves. Shear-induced platelet activation and local flow dynamics: a fluid-structure interaction approach. J Biomech 42(12):1952–1960

    Article  Google Scholar 

  • Morbiducci U, Gallo D, Ponzini R, Massai D, Antiga L, Redaelli A, Montevecchi FM (2010) Quantitative analysis of bulk flow in image-based haemodynamic models of the carotid bifurcation: the influence of outflow conditions as test case. Ann Biomed Eng 38(12):3688–3705

    Article  Google Scholar 

  • Morbiducci U, Ponzini R, Rizzo G, Cadioli M, Esposito A, Montevecchi FM, Redaelli A (2011) Mechanistic insight into the physiological relevance of helical blood flow in the human aorta: an in vivo study. Biomech Model Mechano biol 10:339–355

    Article  Google Scholar 

  • Morbiducci U, Ponzini R, Rizzo G, Biancolini ME, Iannaccone F, Gallo D, Redaelli A (2012) Synthetic dataset generation for the analysis and the evaluation of image-based hemodynamics of the human aorta. Med Biol Eng Comput 50(2):145–154

    Google Scholar 

  • Morbiducci U, PonziniR, Gallo D, Bignardi C, Rizzo G (2013) Inflow boundary conditions for image-based computational hemodynamics: impact of idealized versus measured velocity profiles in the human aorta. J Biomech 46(1):102–109

    Google Scholar 

  • Papathanasopoulou P, Zhao S, Köhler U, Robertson MB, Long Q, Hoskins P, Yun XuX, Marshall I (2003) MRI measurement of time-resolved wall shear stress vectors in a carotid bifurcation model, and comparison with CFD predictions. J Magn Reson Imaging 17:153–162

    Article  Google Scholar 

  • Pedersen EM, Agerbaek M, Kristensen IB, Yoganathan AP (1997) Wall shear stress and early atherosclerotic lesions in the abdominal aorta in young adults. Eur J Vasc Endovasc Surg 13:443–451

    Article  Google Scholar 

  • Perktold K, Resch M (1990) Numerical flow studies in human carotid artery bifurcations: basic discussion of the geometric factor in atherogenesis. J Biomed Eng 12(2):111–123

    Article  Google Scholar 

  • Pritchard WF, Davies PF, Derafshi Z, Polacek DC, Tsao R, Dull RO, Jones SA, Giddens DP (1995) Effects of wall shear stress and fluid recirculation on the localization of circulating monocytes in a three-dimensional flow model. J Biomech 28(12):1459–1469

    Article  Google Scholar 

  • Santilli SM, Stevens RB, Anderson JG, Payne WD, Caldwell MD (1995) Transarterial wall oxygen gradients at the dog carotid bifurcation. Am J Physiol Heart Circ Physiol 268:H155–H161

    Google Scholar 

  • Shaaban AM, Duerinckx AJ (2000) Wall shear stress and early atherosclerosis: a review. Am J Roentgenol 174:1657–1665

    Article  Google Scholar 

  • Shadden SC, Lekien F, Marsden JE (2005) Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Phys D 212(3–4):271–304

    Article  MathSciNet  MATH  Google Scholar 

  • Shadden SC, Taylor CA (2008) Characterization of coherent structures in the cardiovascular system. Ann Biomed Eng 36(7):1152–1162

    Article  Google Scholar 

  • Shtilman L, Levich E, Orszag SA, Pelz RB, Tsinober A (1985) On the role of helicity in complex fluid flows. Phys Lett 113A:32–37

    Article  Google Scholar 

  • Sluimer JC, Gasc JM, van Wanroij JL, Kisters N, Groeneweg M, SollewijnGelpke MD, Cleutjens JP, van den Akker LH, Corvol P, Wouters BG, Daemen MJ, Bijnens AP (2008) Hypoxia, hypoxia-inducible transcription factor, and macrophages in human atherosclerotic plaques are correlated with intraplaque angiogenesis. J Am Coll Cardiol 51:1258–1265

    Article  Google Scholar 

  • Steinman DA (2000) Simulated pathline visualization of computed periodic blood flow patterns. J Biomech 33(5):623–628

    Article  Google Scholar 

  • Stonebridge PA, Hoskins PR, Allan PL, Belch JF (1996) Spiral laminar flow in vivo. Clin Sci 91:17–21

    Google Scholar 

  • Sun N, Wood NB, Hughes AD, Thom SAM, Xu XY (2007) Effects of transmural pressure and wall shear stress on LDL accumulation in the arterial wall: a numerical study using a multilayered model. Am J Physiol Heart Circ Physiol 292:H3148–H3157

    Article  Google Scholar 

  • Tambasco M, Steinman DA (2001) Calculating particle-to-wall distances in unstructured computational fluid dynamic models. Appl Math Model 25:803–814

    Article  MATH  Google Scholar 

  • Tambasco M, Steinman DA (2002) On assessing the quality of particle tracking through computational fluid dynamic models. J Biomech Eng 124:166–175

    Article  Google Scholar 

  • Taylor CA, Steinman DA (2010) Image-based modeling of blood flow and vessel wall dynamics: applications, methods and future directions. Ann Biomed Eng 38(3):1188–1203

    Article  Google Scholar 

  • Vetel J, Garon A, Pelletier D (2009) Lagrangian coherent structures in the human carotid artery bifurcation. Exp Fluid 46(6):1067–1079

    Article  Google Scholar 

  • Womersley JR (1955) Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J Physiol 127:553–563

    Google Scholar 

  • Yoshizumi M, Abe J, Tsuchiya K, Berk BC, Tamaki T (2003) Stress and vascular responses: atheroprotective effect of laminar fluid shear stress in endothelial cells: possible role of mitogen-activated protein kinases. J Pharmacol Sci 91:172–176

    Article  Google Scholar 

  • Zhan F, Fan Y, Deng X (2010) Swirling flow created in a glass tube suppressed platelet adhesion to the surface of the tube: Its implication in the design of small-caliber arterial grafts. Thromb Res 125(5):413–418

    Article  Google Scholar 

  • Zhao SZ, Ariff B, Long Q, Hughes AD, Thom SA, Stanton AV, Xu XY (2002) Inter-individual variations in wall shear stress and mechanical stress distributions at the carotid artery bifurcation of healthy humans. J Biomech 35(10):1367–1377

    Article  Google Scholar 

  • Zheng T, Fan Y, Xiong Y, Jiang W, Deng X (2009) Hemodynamic performance study on small diameter helical grafts. Am Soc Artif Int Organ J 55:192–199

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Diego Gallo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Gallo, D. et al. (2014). A Survey of Quantitative Descriptors of Arterial Flows. In: Lima, R., Imai, Y., Ishikawa, T., Oliveira, M. (eds) Visualization and Simulation of Complex Flows in Biomedical Engineering. Lecture Notes in Computational Vision and Biomechanics, vol 12. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7769-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-7769-9_1

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-7768-2

  • Online ISBN: 978-94-007-7769-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics