Skip to main content

Regulation of the Novel Senescence Pathway by SKP2 E3 Ligase

  • Chapter
  • First Online:
Tumor Dormancy, Quiescence, and Senescence, Volume 2

Part of the book series: Tumor Dormancy and Cellular Quiescence and Senescence ((DOQU,volume 2))

  • 1447 Accesses

Abstract

Cellular senescence, a stress response triggered by multiple stimuli, results in a form of irreversible cell cycle arrest that can serve as a critical barrier for cancer development. Various studies have demonstrated the critical role of ARF/p53 pathways in the induction of cellular senescence by activation of oncogenic pathways through overexpression of oncogenes, such as Ras, or by inactivation of tumor suppressor genes, such as PTEN. Recent studies also uncover novel ARF/p53-independent cellular senescence pathways in restricting tumorigenesis. Given that ARF/p53 pathways play an essential role in tumor suppression and are often inactivated in human cancers through deficiency or mutations of ARF or p53, better understanding of these pathways governing the induction of senescence in human cancer will pave the ways for developing effective pro-senescence therapies. Thus, it’s important to screen current available drugs that stabilize p53 expression for the ability to target possibility that these Arf-p53 dependent pathways or by developing novel inhibitors to target the Arf-p53 independent pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acosta JC, Gil J (2012) Senescence: a new weapon for cancer therapy. Trends Cell Biol 22:211–219

    Article  PubMed  CAS  Google Scholar 

  • Alimonti A, Nardella C, Chen Z et al (2010) A novel type of cellular senescence that can be enhanced in mouse models and human tumor xenografts to suppress prostate tumorigenesis. J Clin Invest 120:681–693

    Article  PubMed  CAS  Google Scholar 

  • Back JH, Rezvani HR, Zhu Y et al (2011) Cancer cell survival following DNA damage-mediated premature senescence is regulated by mammalian target of rapamycin (mTOR)-dependent inhibition of sirtuin 1. J Biol Chem 286:19100–19108

    Article  PubMed  CAS  Google Scholar 

  • Bartkova J, Rezaei N, Liontos M et al (2006) Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444:633–637

    Article  PubMed  CAS  Google Scholar 

  • Braig M, Lee S, Loddenkemper C et al (2005) Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 436:660–665

    Article  PubMed  CAS  Google Scholar 

  • Brown JP, Wei W, Sedivy JM (1997) Bypass of senescence after disruption of p21CIP1/WAF1 gene in normal diploid human fibroblasts. Science 277:831–834

    Article  PubMed  CAS  Google Scholar 

  • Chan CH, Li CF, Yang WL et al (2012) The Skp2-SCF E3 ligase regulates Akt ubiquitination, glycolysis, herceptin sensitivity, and tumorigenesis. Cell 149:1098–1111

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Trotman LC, Shaffer D et al (2005) Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436:725–730

    Article  PubMed  CAS  Google Scholar 

  • Chen Z, Carracedo A, Lin HK et al (2009) Differential p53-independent outcomes of p19(Arf) loss in oncogenesis. Sci Signal 2:ra44

    PubMed  Google Scholar 

  • Cipriano R, Kan CE, Graham J et al (2011) TGF-beta signaling engages an ATM-CHK2-p53-independent RAS-induced senescence and prevents malignant transformation in human mammary epithelial cells. Proc Natl Acad Sci U S A 108:8668–8673

    Article  PubMed  CAS  Google Scholar 

  • d’Adda di Fagagna F, Reaper PM, Clay-Farrace L et al (2003) A DNA damage checkpoint response in telomere-initiated senescence. Nature 426:194–198

    Article  PubMed  Google Scholar 

  • Di Cristofano A, Pesce B, Cordon-Cardo C et al (1998) Pten is essential for embryonic development and tumour suppression. Nat Genet 19:348–355

    Article  PubMed  Google Scholar 

  • Di Micco R, Fumagalli M, Cicalese A et al (2006) Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 444:638–642

    Article  PubMed  Google Scholar 

  • Ding Z, Wu CJ, Chu GC et al (2011) SMAD4-dependent barrier constrains prostate cancer growth and metastatic progression. Nature 470:269–273

    Article  PubMed  CAS  Google Scholar 

  • Frescas D, Pagano M (2008) Deregulated proteolysis by the F-box proteins SKP2 and beta-TrCP: tipping the scales of cancer. Nat Rev Cancer 8:438–449

    Article  PubMed  CAS  Google Scholar 

  • Hayflick L, Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25(3):585–621

    Article  PubMed  CAS  Google Scholar 

  • Herbig U, Jobling WA, Chen BP et al (2004) Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). Mol Cell 14:501–513

    Article  PubMed  CAS  Google Scholar 

  • Herbig U, Ferreira M, Condel L et al (2006) Cellular senescence in aging primates. Science 311:1257

    Article  PubMed  CAS  Google Scholar 

  • Hydbring P, Bahram F, Su Y et al (2010) Phosphorylation by Cdk2 is required for Myc to repress Ras-induced senescence in cotransformation. Proc Natl Acad Sci U S A 107:58–63

    Article  PubMed  CAS  Google Scholar 

  • Kaelin WG (2007) Von Hippel-Lindau disease. Annu Rev Pathol 2:145–173

    Article  PubMed  CAS  Google Scholar 

  • Kamijo T, Bodner S, van de Kamp E et al (1999) Tumor spectrum in ARF-deficient mice. Cancer Res 59:2217–2222

    PubMed  CAS  Google Scholar 

  • Karlseder J, Smogorzewska A, de Lange T (2002) Senescence induced by altered telomere state, not telomere loss. Science 295:2446–2449

    Article  PubMed  CAS  Google Scholar 

  • Krtolica A, Parrinello S, Lockett S et al (2001) Senescent fibroblasts promote epithelial cell growth and tumorigenesis: a link between cancer and aging. Proc Natl Acad Sci U S A 98:12072–12077

    Article  PubMed  CAS  Google Scholar 

  • Lin AW, Barradas M, Stone JC et al (1998) Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling. Genes Dev 12:3008–3019

    Article  PubMed  CAS  Google Scholar 

  • Lin HK, Chen Z, Wang G et al (2010) Skp2 targeting suppresses tumorigenesis by Arf-p53-independent cellular senescence. Nature 464:374–379

    Article  PubMed  CAS  Google Scholar 

  • Michaloglou C, Vredeveld LC, Soengas MS et al (2005) BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436:720–724

    Article  PubMed  CAS  Google Scholar 

  • Moiseeva O, Mallette FA, Mukhopadhyay UK et al (2006) DNA damage signaling and p53-dependent senescence after prolonged beta-interferon stimulation. Mol Biol Cell 17:1583–1592

    Article  PubMed  CAS  Google Scholar 

  • Nardella C, Clohessy JG, Alimonti A et al (2011) Pro-senescence therapy for cancer treatment. Nat Rev Cancer 11:503–511

    Article  PubMed  CAS  Google Scholar 

  • Puyol M, Martin A, Dubus P et al (2010) A synthetic lethal interaction between K-Ras oncogenes and Cdk4 unveils a therapeutic strategy for non-small cell lung carcinoma. Cancer Cell 18:63–73

    Article  PubMed  CAS  Google Scholar 

  • Rodier F, Campisi J (2011) Four faces of cellular senescence. J Cell Biol 192:547–556

    Article  PubMed  CAS  Google Scholar 

  • Serrano M, Lin AW, McCurrach ME et al (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88:593–602

    Article  PubMed  CAS  Google Scholar 

  • Song MS, Carracedo A, Salmena L et al (2011) Nuclear PTEN regulates the APC-CDH1 tumor-suppressive complex in a phosphatase-independent manner. Cell 144:187–199

    Article  PubMed  CAS  Google Scholar 

  • Soucek L, Whitfield J, Martins CP et al (2008) Modelling Myc inhibition as a cancer therapy. Nature 455:679–683

    Article  PubMed  CAS  Google Scholar 

  • Takai H, Smogorzewska A, de Lange T (2003) DNA damage foci at dysfunctional telomeres. Curr Biol 13:1549–1556

    Article  PubMed  CAS  Google Scholar 

  • Vogelstein B, Kinzler KW (2004) Cancer genes and the pathways they control. Nat Med 10:789–799

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Blandino G, Givol D (1999) Induced p21waf expression in H1299 cell line promotes cell senescence and protects against cytotoxic effect of radiation and doxorubicin. Oncogene 18:2643–2649

    Article  PubMed  CAS  Google Scholar 

  • Whibley C, Pharoah PD, Hollstein M (2009) p53 polymorphisms: cancer implications. Nat Rev Cancer 9:95–107

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Zhang X, Zhang L et al (2012) Skp2 E3 ligase integrates ATM activation and homologous recombination repair by ubiquitinating NBS1. Mol Cell 46:351–361

    Article  PubMed  CAS  Google Scholar 

  • Xue W, Zender L, Miething CD et al (2007) Senescence and tumour clearance is triggered by p53 restoration in murine liver carcinomas. Nature 445:656–660

    Article  PubMed  CAS  Google Scholar 

  • Young AP, Schlisio S, Minamishima YA et al (2008) VHL loss actuates a HIF-independent senescence programme mediated by Rb and p400. Nat Cell Biol 10:361–369

    Article  PubMed  CAS  Google Scholar 

  • Zhu J, Woods D, McMahon M, Bishop JM (1998) Senescence of human fibroblasts induced by oncogenic Raf. Genes Dev 12:2997–3007

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported in part by National Institutes of Health grants (R01CA136787-01A2 and R01CA149321-01), MD Anderson Trust Scholar Fund, a grant from Cancer Prevention Research Institute of Texas and by a New Investigator Award from the Department of Defense (PC081292) to H.K. Lin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-Kuan Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wang, G., Gao, Y., Chen, L., Wang, YJ., Lin, HK. (2014). Regulation of the Novel Senescence Pathway by SKP2 E3 Ligase. In: Hayat, M. (eds) Tumor Dormancy, Quiescence, and Senescence, Volume 2. Tumor Dormancy and Cellular Quiescence and Senescence, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7726-2_4

Download citation

Publish with us

Policies and ethics