Skip to main content

The Transcription Factor GATA2 Regulates Quiescence in Haematopoietic Stem and Progenitor Cells

  • Chapter
  • First Online:
Tumor Dormancy, Quiescence, and Senescence, Volume 2

Part of the book series: Tumor Dormancy and Cellular Quiescence and Senescence ((DOQU,volume 2))

  • 1474 Accesses

Abstract

Control of haematopoietic stem cell (HSC) proliferation is critical in preventing bone marrow failure or haematological malignancy. Understanding the mechanisms that balance the requirement to restrain excessive HSC proliferation while allowing for production of blood cells and maintenance of the HSC pool is therefore of substantial clinical interest. Herein we discuss the nature of HSC quiescence and the role of the zinc finger transcription factor GATA2 in regulating a gene expression program which reversibly confers quiescence on HSCs and committed progenitors. We present data extending previous observations of reduced HSC and progenitor functionality in the context of enforced GATA2 expression, and begin to demonstrate the molecular mechanisms by which the GATA2 program appears to function in restraining HSC and progenitor cell proliferation. Conversely, we also show that Gata2 haploinsufficiency impacts the quiescent program of HSCs and committed progenitors, demonstrating that HSC proliferation is exquisitely responsive to either up or down-regulation of GATA2 level. Finally, we discuss the clinical manifestations of loss-of-function GATA2 mutations and high GATA2 expression in the pre-malignant myelodysplastic syndromes and myeloid leukaemia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Cheng T, Rodrigues N, Shen H, Yang Y, Dombkowski D, Sykes M, Scadden DT (2000) Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science 287:1804–1808

    Article  PubMed  CAS  Google Scholar 

  • Dao MA, Nolta JA (2007) Cytokine and integrin stimulation synergize to promote higher levels of GATA-2, c-myb, and CD34 protein in primary human hematopoietic progenitors from bone marrow. Blood 109:2373–2379

    Article  PubMed  CAS  Google Scholar 

  • Dey S, Curtis DJ, Jane SM, Brandt SJ (2010) The TAL1/SCL transcription factor regulates cell cycle progression and proliferation in differentiating murine bone marrow monocyte precursors. Mol Cell Biol 30:2181–2192

    Article  PubMed  CAS  Google Scholar 

  • Ehninger A, Trumpp A (2011) The bone marrow stem cell niche grows up: mesenchymal stem cells and macrophages move in. J Exp Med 208:421–428

    Article  PubMed  CAS  Google Scholar 

  • Grassinger J, Haylock DN, Williams B, Olsen GH, Nilsson SK (2010) Phenotypically identical hemopoietic stem cells isolated from different regions of bone marrow have different biologic potential. Blood 116:3185–3196

    Article  PubMed  CAS  Google Scholar 

  • Heyworth C, Gale K, Dexter M, May G, Enver T (1999) A GATA-2/estrogen receptor chimera functions as a ligand-dependent negative regulator of self-renewal. Genes Dev 13:1847–1860

    Article  PubMed  CAS  Google Scholar 

  • Janumyan YM, Sansam CG, Chattopadhyay A, Cheng N, Soucie EL, Penn LZ, Andrews D, Knudson CM, Yang E (2003) Bcl-xL/Bcl-2 coordinately regulates apoptosis, cell cycle arrest and cell cycle entry. EMBO J 22:5459–5470

    Article  PubMed  CAS  Google Scholar 

  • Kitajima K, Masuhara M, Era T, Enver T, Nakano T (2002) GATA-2 and GATA-2/ER display opposing activities in the development and differentiation of blood progenitors. EMBO J 21:3060–3069

    Article  PubMed  CAS  Google Scholar 

  • Lacorazza HD, Yamada T, Liu Y, Miyata Y, Sivina M, Nunes J, Nimer SD (2006) The transcription factor MEF/ELF4 regulates the quiescence of primitive hematopoietic cells. Cancer Cell 9:175–187

    Article  PubMed  CAS  Google Scholar 

  • Li J (2011) Quiescence regulators for hematopoietic stem cell. Exp Hematol 39:511–520

    Article  PubMed  Google Scholar 

  • Liu F, Walmsley M, Rodaway A, Patient R (2008) Fli1 acts at the top of the transcriptional network driving blood and endothelial development. Curr Biol 18:1234–1240

    Article  PubMed  CAS  Google Scholar 

  • Lorenzo PI, Brendeford EM, Gilfillan S, Gavrilov AA, Leedsak M, Razin SV, Eskeland R, Saether T, Gabrielsen OS (2011) Identification of c-Myb target genes in K562 cells reveals a role for c-Myb as a master regulator. Genes Cancer 2:805–817

    Article  PubMed  CAS  Google Scholar 

  • Maeda K, Nishiyama C, Ogawa H, Okumura K (2010) GATA2 and Sp1 positively regulate the c-kit promoter in mast cells. J Immunol 185:4252–4260

    Article  PubMed  CAS  Google Scholar 

  • Minegishi N, Suzuki N, Kawatani Y, Shimizu R, Yamamoto M (2005) Rapid turnover of GATA-2 via ubiquitin-proteasome protein degradation pathway. Genes Cells 10:693–704

    Article  PubMed  CAS  Google Scholar 

  • Nie Y, Han YC, Zou YR (2008) CXCR4 is required for the quiescence of primitive hematopoietic cells. J Exp Med 205:777–783

    Article  PubMed  CAS  Google Scholar 

  • Orlic D, Anderson S, Biesecker LG, Sorrentino BP, Bodine DM (1995) Pluripotent hematopoietic stem cells contain high levels of mRNA for c-kit, GATA-2, p45 NF-E2, and c-myb and low levels or no mRNA for c-fms and the receptors for granulocyte colony-stimulating factor and interleukins 5 and 7. Proc Natl Acad Sci U S A 92:4601–4605

    Article  PubMed  CAS  Google Scholar 

  • Passegue E, Wagers AJ, Giuriato S, Anderson WC, Weissman IL (2005) Global analysis of proliferation and cell cycle gene expression in the regulation of hematopoietic stem and progenitor cell fates. J Exp Med 202:1599–1611

    Article  PubMed  CAS  Google Scholar 

  • Persons DA, Allay JA, Allay ER, Ashmun RA, Orlic D, Jane SM, Cunningham JM, Nienhuis AW (1999) Enforced expression of the GATA-2 transcription factor blocks normal hematopoiesis. Blood 93:488–499

    PubMed  CAS  Google Scholar 

  • Rhee K, Bresnahan W, Hirai A, Hirai M, Thompson EA (1995) c-Myc and cyclin D3 CcnD3. genes are independent targets for glucocorticoid inhibition of lymphoid cell proliferation. Cancer Res 55:4188–4195

    PubMed  CAS  Google Scholar 

  • Rodrigues NP, Boyd AS, Fugazza C, May GE, Guo Y, Tipping AJ, Scadden DT, Vyas P, Enver T (2008) GATA-2 regulates granulocyte-macrophage progenitor cell function. Blood 112:4862–4873

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues NP, Janzen V, Forkert R, Dombkowski DM, Boyd AS, Orkin SH, Enver T, Vyas P, Scadden DT (2005) Haploinsufficiency of GATA-2 perturbs adult hematopoietic stem-cell homeostasis. Blood 106:477–484

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues NP, Tipping AJ, Wang Z, Enver T (2012) GATA-2 mediated regulation of normal hematopoietic stem/progenitor cell function, myelodysplasia and myeloid leukemia. Int J Biochem Cell Biol 44:457–460

    Article  PubMed  CAS  Google Scholar 

  • Sumner R, Crawford A, Mucenski M, Frampton J (2000) Initiation of adult myelopoiesis can occur in the absence of c-Myb whereas subsequent development is strictly dependent on the transcription factor. Oncogene 19:3335–3342

    Article  PubMed  CAS  Google Scholar 

  • Tipping AJ, Pina C, Castor A, Hong D, Rodrigues NP, Lazzari L, May GE, Jacobsen SE, Enver T (2009) High GATA-2 expression inhibits human hematopoietic stem and progenitor cell function by effects on cell cycle. Blood 113:2661–2672

    Article  PubMed  CAS  Google Scholar 

  • Trumpp A, Essers M, Wilson A (2010) Awakening dormant haematopoietic stem cells. Nat Rev Immunol 10:201–209

    Article  PubMed  CAS  Google Scholar 

  • Tsai FY, Keller G, Kuo FC, Weiss M, Chen J, Rosenblatt M, Alt FW, Orkin SH (1994) An early haematopoietic defect in mice lacking the transcription factor GATA-2. Nature 371:221–226

    Article  PubMed  CAS  Google Scholar 

  • Venezia TA, Merchant AA, Ramos CA, Whitehouse NL, Young AS, Shaw CA, Goodell MA (2004) Molecular signatures of proliferation and quiescence in hematopoietic stem cells. PLoS Biol 2:e301

    Article  PubMed  Google Scholar 

  • Vicente C, Vazquez I, Conchillo A, Garcia-Sanchez MA, Marcotegui N, Fuster O, Gonzalez M, Calasanz MJ, Lahortiga I, Odero MD (2012) Overexpression of GATA2 predicts an adverse prognosis for patients with acute myeloid leukemia and it is associated with distinct molecular abnormalities. Leukemia 26:550–554

    Article  PubMed  CAS  Google Scholar 

  • Yu X, Alder JK, Chun JH, Friedman AD, Heimfeld S, Cheng L, Civin CI (2006) HES1 inhibits cycling of hematopoietic progenitor cells via DNA binding. Stem Cells 24:876–888

    Article  PubMed  CAS  Google Scholar 

  • Yuasa H, Oike Y, Iwama A, Nishikata I, Sugiyama D, Perkins A, Mucenski ML, Suda T, Morishita K (2005) Oncogenic transcription factor Evi1 regulates hematopoietic stem cell proliferation through GATA-2 expression. EMBO J 24:1976–1987

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by Leukaemia Lymphoma Research, the Medical Research Council, and EuroSyStem. Funding to Neil Rodrigues was provided by National Center for Research Resources (5P20RR018757-10) and the National Institute of General Medical Sciences (8 P20 GM103414-10) from the National Institutes of Health, BD Biosciences and the Rhode Island Foundation. We acknowledge our collaborators within the laboratories of Tariq Enver and Sten Eirik Jacobsen and the Weather all Institute of Molecular Medicine, Oxford; and thank Lorenza Lazzari (Cell Factory, Milan, Italy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex J. Tipping .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rodrigues, N.P., Tipping, A.J. (2014). The Transcription Factor GATA2 Regulates Quiescence in Haematopoietic Stem and Progenitor Cells. In: Hayat, M. (eds) Tumor Dormancy, Quiescence, and Senescence, Volume 2. Tumor Dormancy and Cellular Quiescence and Senescence, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7726-2_26

Download citation

Publish with us

Policies and ethics