Skip to main content

Quiescent CD4+ T Cells Inhibit Multiple Stages of HIV Infection

  • Chapter
  • First Online:
Tumor Dormancy, Quiescence, and Senescence, Volume 2

Part of the book series: Tumor Dormancy and Cellular Quiescence and Senescence ((DOQU,volume 2))

  • 1425 Accesses

Abstract

Elucidating the block of quiescent CD4+ T cells to HIV infection has been an intensely debated issue. Early studies suggested that the virus could not infect this T cell subset; latter studies demonstrated that these cells could inefficiently support HIV infection. The kinetics of infection in quiescent cells was delayed and multiple stages of the viral life cycle were marred by inefficiencies. A number of restriction factors as well as cellular protein have been implicated in the potential block. However, to this date the mechanisms of HIV infection in quiescent cells are still unclear. Further understanding will open the way for better therapeutic approaches and much improved gene therapy protocols using HIV-based vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agosto LM, Yu JJ, Liszewski MK, Baytop C, Korokhov N, Humeau LM, O’Doherty U (2009) The CXCR4-tropic human immunodeficiency virus envelope promotes more-efficient gene delivery to resting CD4+ T cells than the vesicular stomatitis virus glycoprotein G envelope. J Virol 83(16):8153–8162

    Article  PubMed  CAS  Google Scholar 

  • Aksoylar HI, Lampe K, Barnes MJ, Plas DR, Hoebe K (2011) Loss of immunological tolerance in Gimap5-deficient mice is associated with loss of foxo in CD4+ T cells. J Immunol 188(1):146–154

    Article  PubMed  Google Scholar 

  • Auewarakul P, Wacharapornin P, Srichatrapimuk S, Chutipongtanate S, Puthavathana P (2005) Uncoating of HIV-1 requires cellular activation. Virology 337(1):93–101

    Article  PubMed  CAS  Google Scholar 

  • Barnes MJ, Aksoylar H, Krebs P, Bourdeau T, Arnold CN, Xia Y, Khovananth K, Engel I, Sovath S, Lampe K, Laws E, Saunders A, Butcher GW, Kronenberg M, Steinbrecher K, Hildeman D, Grimes HL, Beutler B, Hoebe K (2010) Loss of T cell and B cell quiescence precedes the onset of microbial flora-dependent wasting disease and intestinal inflammation in Gimap5-deficient mice. J Immunol 184(7):3743–3754

    Article  PubMed  CAS  Google Scholar 

  • Borvak J, Chou CS, Bell K, Van Dyke G, Zola H, Ramilo O, Vitetta ES (1995) Expression of CD25 defines peripheral blood mononuclear cells with productive versus latent HIV infection. J Immunol 155(6):3196–3204

    PubMed  CAS  Google Scholar 

  • Brady T, Agosto LM, Malani N, Berry CC, O’Doherty U, Bushman F (2009) HIV integration site distributions in resting and activated CD4+ T cells infected in culture. AIDS 23(12):1461–1471

    Article  PubMed  Google Scholar 

  • Briones MS, Dobard CW, Chow SA (2010) Role of human immunodeficiency virus type 1 integrase in uncoating of the viral core. J Virol 84(10):5181–5190

    Article  PubMed  CAS  Google Scholar 

  • Buckley AF, Kuo CT, Leiden JM (2001) Transcription factor LKLF is sufficient to program T cell quiescence via a c-Myc–dependent pathway. Nat Immunol 2(8):698–704

    Article  PubMed  CAS  Google Scholar 

  • Chiu YL, Soros VB, Kreisberg JF, Stopak K, Yonemoto W, Greene WC (2005) Cellular APOBEC3G restricts HIV-1 infection in resting CD4+ T cells. Nature 435(7038):108–114

    Article  PubMed  CAS  Google Scholar 

  • Chou CS, Ramilo O, Vitetta ES (1997) Highly purified CD25- resting T cells cannot be infected de novo with HIV-1. Proc Natl Acad Sci U S A 94(4):1361–1365

    Article  PubMed  CAS  Google Scholar 

  • Cotner T, Williams JM, Christenson L, Shapiro HM, Strom TB, Strominger J (1983) Simultaneous flow cytometric analysis of human T cell activation antigen expression and DNA content. J Exp Med 157(2):461–472

    Article  PubMed  CAS  Google Scholar 

  • Ganesh L, Burstein E, Guha-Niyogi A, Louder MK, Mascola JR, Klomp LW, Wijmenga C, Duckett CS, Nabel GJ (2003) The gene product Murr1 restricts HIV-1 replication in resting CD4+ lymphocytes. Nature 426(6968):853–857

    Article  PubMed  CAS  Google Scholar 

  • Gowda SD, Stein BS, Mohagheghpour N, Benike CJ, Engleman EG (1989) Evidence that T cell activation is required for HIV-1 entry in CD4+ lymphocytes. J Immunol 142(3):773–780

    PubMed  CAS  Google Scholar 

  • Haaland RE, Yu W, Rice AP (2005) Identification of LKLF-regulated genes in quiescent CD4+ T lymphocytes. Mol Immunol 42(5):627–641

    Article  PubMed  CAS  Google Scholar 

  • Han Y, Lassen K, Monie D, Sedaghat AR, Shimoji S, Liu X, Pierson TC, Margolick JB, Siliciano RF, Siliciano JD (2004) Resting CD4+ T cells from human immunodeficiency virus type 1 (HIV-1)-infected individuals carry integrated HIV-1 genomes within actively transcribed host genes. J Virol 78(12):6122–6133

    Article  PubMed  CAS  Google Scholar 

  • Kamata M, Nagaoka Y, Chen IS (2009) Reassessing the role of APOBEC3G in human immunodeficiency virus type 1 infection of quiescent CD4+ T-cells. PLoS Pathog 5(3):e1000342

    Article  PubMed  Google Scholar 

  • Kops GJ, Dansen TB, Polderman PE, Saarloos I, Wirtz KW, Coffer PJ, Huang TT, Bos JL, Medema RH, Burgering BM (2002) Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature 419(6904):316–321

    Article  PubMed  CAS  Google Scholar 

  • Korin YD, Zack JA (1998) Progression to the G1b phase of the cell cycle is required for completion of human immunodeficiency virus type 1 reverse transcription in T cells. J Virol 72(4):3161–3168

    PubMed  CAS  Google Scholar 

  • Korin YD, Zack JA (1999) Nonproductive human immunodeficiency virus type 1 infection in nucleoside-treated G0 lymphocytes. J Virol 73(8):6526–6532

    PubMed  CAS  Google Scholar 

  • Kuo CT, Veselits ML, Leiden JM (1997) LKLF: a transcriptional regulator of single-positive T cell quiescence and survival. Science 277(5334):1986–1990

    Article  PubMed  CAS  Google Scholar 

  • Lassen KG, Ramyar KX, Bailey JR, Zhou Y, Siliciano RF (2006) Nuclear retention of multiply spliced HIV-1 RNA in resting CD4+ T cells. PLoS Pathog 2(7):e68

    Article  PubMed  Google Scholar 

  • Loisel-Meyer S, Swainson L, Craveiro M, Oburoglu L, Mongellaz C, Costa C, Martinez M, Cosset FL, Battini JL, Herzenberg LA, Atkuri KR, Sitbon M, Kinet S, Verhoeyen E, Taylor N (2012) Glut1-mediated glucose transport regulates HIV infection. Proc Natl Acad Sci U S A 109(7):2549–2554

    Article  PubMed  CAS  Google Scholar 

  • Manganaro L, Lusic M, Gutierrez MI, Cereseto A, Del Sal G, Giacca M (2010) Concerted action of cellular JNK and Pin1 restricts HIV-1 genome integration to activated CD4+ T lymphocytes. Nat Med 16(3):329–333

    Article  PubMed  CAS  Google Scholar 

  • Mangeat B, Turelli P, Caron G, Friedli M, Perrin L, Trono D (2003) Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts. Nature 424(6944):99–103

    Article  PubMed  CAS  Google Scholar 

  • Nishimura Y, Sadjadpour R, Mattapallil JJ, Igarashi T, Lee W, Buckler-White A, Roederer M, Chun TW, Martin MA (2009) High frequencies of resting CD4+ T cells containing integrated viral DNA are found in rhesus macaques during acute lentivirus infections. Proc Natl Acad Sci U S A 106(19):8015–8020

    Article  PubMed  CAS  Google Scholar 

  • Ouyang W, Beckett O, Flavell RA, Li MO (2009) An essential role of the Forkhead-box transcription factor Foxo1 in control of T cell homeostasis and tolerance. Immunity 30(3):358–371

    Article  PubMed  CAS  Google Scholar 

  • Pierson TC, Zhou Y, Kieffer TL, Ruff CT, Buck C, Siliciano RF (2002) Molecular characterization of preintegration latency in human immunodeficiency virus type 1 infection. J Virol 76(17):8518–8531

    Article  PubMed  CAS  Google Scholar 

  • Plesa G, Dai J, Baytop C, Riley JL, June CH, O’Doherty U (2007) Addition of deoxynucleosides enhances human immunodeficiency virus type 1 integration and 2LTR formation in resting CD4+ T cells. J Virol 81(24):13938–13942

    Article  PubMed  CAS  Google Scholar 

  • Ramilo O, Bell KD, Uhr JW, Vitetta ES (1993) Role of CD25+ and CD25-T cells in acute HIV infection in vitro. J Immunol 150(11):5202–5208

    PubMed  CAS  Google Scholar 

  • Santoni de Sio FR, Trono D (2009) APOBEC3G-depleted resting CD4+ T cells remain refractory to HIV1 infection. PLoS ONE 4(8):e6571

    Article  PubMed  Google Scholar 

  • Sheehy AM, Gaddis NC, Choi JD, Malim MH (2002) Isolation of a human gene that inhibits HIV-1 infection and is suppressed by the viral Vif protein. Nature 418(6898):646–650

    Article  PubMed  CAS  Google Scholar 

  • Spina CA, Guatelli JC, Richman DD (1995) Establishment of a stable, inducible form of human immunodeficiency virus type 1 DNA in quiescent CD4 lymphocytes in vitro. J Virol 69(5):2977–2988

    PubMed  CAS  Google Scholar 

  • Stevenson M, Stanwick TL, Dempsey MP, Lamonica CA (1990) HIV-1 replication is controlled at the level of T cell activation and proviral integration. Embo J 9(5):1551–1560

    PubMed  CAS  Google Scholar 

  • Swiggard WJ, O’Doherty U, McGain D, Jeyakumar D, Malim MH (2004) Long HIV type 1 reverse transcripts can accumulate stably within resting CD4+ T cells while short ones are degraded. AIDS Res Hum Retroviruses 20(3):285–295

    Article  PubMed  CAS  Google Scholar 

  • Swiggard WJ, Baytop C, Yu JJ, Dai J, Li C, Schretzenmair R, Theodosopoulos T, O’Doherty U (2005) Human immunodeficiency virus type 1 can establish latent infection in resting CD4+ T cells in the absence of activating stimuli. J Virol 79(22):14179–14188

    Article  PubMed  CAS  Google Scholar 

  • Tzachanis D, Boussiotis VA (2009) Tob, a member of the APRO family, regulates immunological quiescence and tumor suppression. Cell Cycle 8(7):1019–1025

    Article  PubMed  CAS  Google Scholar 

  • Tzachanis D, Freeman GJ, Hirano N, van Puijenbroek AA, Delfs MW, Berezovskaya A, Nadler LM, Boussiotis VA (2001) Tob is a negative regulator of activation that is expressed in anergic and quiescent T cells. Nat Immunol 2(12):1174–1182

    Article  PubMed  CAS  Google Scholar 

  • Tzachanis D, Lafuente EM, Li L, Boussiotis VA (2004) Intrinsic and extrinsic regulation of T lymphocyte quiescence. Leuk Lymphoma 45(10):1959–1967

    Article  PubMed  CAS  Google Scholar 

  • Vatakis DN, Bristol G, Wilkinson TA, Chow SA, Zack JA (2007) Immediate activation fails to rescue efficient human immunodeficiency virus replication in quiescent CD4+ T cells. J Virol 81(7):3574–3582

    Article  PubMed  CAS  Google Scholar 

  • Vatakis DN, Kim S, Kim N, Chow SA, Zack JA (2009) HIV integration efficiency and site selection in quiescent CD4+ T cells. J Virol. doi:10.1128/JVI.00356–09

    Google Scholar 

  • Weinberg JB, Matthews TJ, Cullen BR, Malim MH (1991) Productive human immunodeficiency virus type 1 (HIV-1) infection of nonproliferating human monocytes. J Exp Med 174(6):1477–1482

    Article  PubMed  CAS  Google Scholar 

  • Wong WF, Kohu K, Nakamura A, Ebina M, Kikuchi T, Tazawa R, Tanaka K, Kon S, Funaki T, Sugahara-Tobinai A, Looi CY, Endo S, Funayama R, Kurokawa M, Habu S, Ishii N, Fukumoto M, Nakata K, Takai T, Satake M (2012) Runx1 deficiency in CD4+ T cells causes fatal autoimmune inflammatory lung disease due to spontaneous hyperactivation of cells. J Immunol 188(11):5408–5420

    Article  PubMed  CAS  Google Scholar 

  • Wu Q, Liu Y, Chen C, Ikenoue T, Qiao Y, Li CS, Li W, Guan KL, Zheng P (2011) The tuberous sclerosis complex-mammalian target of rapamycin pathway maintains the quiescence and survival of naive T cells. J Immunol 187(3):1106–1112

    Article  PubMed  CAS  Google Scholar 

  • Yang K, Neale G, Green DR, He W, Chi H (2011) The tumor suppressor Tsc1 enforces quiescence of naive T cells to promote immune homeostasis and function. Nat Immunol 12(9):888–897

    Article  PubMed  CAS  Google Scholar 

  • Yusuf I, Kharas MG, Chen J, Peralta RQ, Maruniak A, Sareen P, Yang VW, Kaestner KH, Fruman DA (2008) KLF4 is a FOXO target gene that suppresses B cell proliferation. Int Immunol 20(5):671–681

    Article  PubMed  CAS  Google Scholar 

  • Zack JA, Arrigo SJ, Weitsman SR, Go AS, Haislip A, Chen IS (1990) HIV-1 entry into quiescent primary lymphocytes: molecular analysis reveals a labile, latent viral structure. Cell 61(2):213–222

    Article  PubMed  CAS  Google Scholar 

  • Zagury D, Bernard J, Leonard R, Cheynier R, Feldman M, Sarin PS, Gallo RC (1986) Long-term cultures of HTLV-III–infected T cells: a model of cytopathology of T-cell depletion in AIDS. Science 231(4740):850–853

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Yang B, Pomerantz RJ, Zhang C, Arunachalam SC, Gao L (2003) The cytidine deaminase CEM15 induces hypermutation in newly synthesized HIV-1 DNA. Nature 424(6944):94–98

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y, Zhang H, Siliciano JD, Siliciano RF (2005) Kinetics of human immunodeficiency virus type 1 decay following entry into resting CD4+ T cells. J Virol 79(4):2199–2210

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by in part by NIH/NIAID AI 070010-06A1, NIH Martin Delaney Collaboratory(to J.A.Z.), UCLA Center for AIDS Research NIH/National Institute of Allergy and Infectious Diseases Grant AI028697, NIH/NIDA R21 DA031036-01A1 (D.N.V.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios N. Vatakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Zack, J.A., Vatakis, D.N. (2014). Quiescent CD4+ T Cells Inhibit Multiple Stages of HIV Infection. In: Hayat, M. (eds) Tumor Dormancy, Quiescence, and Senescence, Volume 2. Tumor Dormancy and Cellular Quiescence and Senescence, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7726-2_24

Download citation

Publish with us

Policies and ethics