Skip to main content

Abstract

The genesis of tropical cyclones over the Bay of Bengal (BoB) is highly seasonal. The post-monsoon season, i.e. during the months of October to mid December, contributes maximum number of TCs and the pre-monsoon season (April to May) has secondary maxima. Detailed climatology of the TCs over BoB is available in Storm Atlas of India Meteorological Department (IMD), 2008 and Mohanty et al. (2011). Mohanty et al. (2011) depict that out of a total of 606 TCs [which include deep depression (DD), cyclonic storm (CS), and severe cyclonic storm (SCS)] during 1891-2010 formed over the BoB, about 54% have crossed Indian coast.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baldocchi, D.D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S., Anthoni, P., Bernhofer, C., Davis, K., Fuentes, J., Goldstein, A., Katul, G., Law, B., Lee, X., Malhi, Y., Meyers, T., Munger, W., Oechel, W., Paw, U.K.T., Pilegaard, K., Schmid, H.P., Valentini, R., Verma, S., Vesala, T., Wilson, K. and Wofsy, S. (2001). FLUXNET: a new tool to study the temporal and spatial variability of ecosystem- scale carbon dioxide, water vapor, and energy flux densities. Bull. Am. Meteorol. Soc., 82: 2415-2434.

    Google Scholar 

  • Bhaskar Rao, D.V. and Ratna, Satyaban Bishoyi (2010). Mesoscale characteristics and prediction of an unusual extreme heavy precipitation event over India using a high resolution mesoscale model. Atmos. Res., 95: 255-269.

    Google Scholar 

  • Davis, C.A., Wang, W., Chen, S., Chen, Y., Corbosiero, K., DeMaria, M., Dudhia, J., Holland, G., Klemp, J., Michalakes, J., Reeves, H., Rotunno, R. and Xiao, Q. (2008). Prediction of landfalling hurricanes with the advanced hurricane WRF model. Mon. Wea. Rev., 136: 1990-2005.

    Google Scholar 

  • Ek, M.B., Mitchell, K.E., Lin, Y., Rogers, E., Grummann, P., Koren, V., Gayno, G. and Tarpley, J.D. (2003). Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational Mesoscale Eta Model . J. Geophys. Res., 108: 8851, doi:10.1029/2002JD003296.

    Article  Google Scholar 

  • Holt, T., Niyogi, D., Chen, F., Manning, K., LeMone, M. and Qureshi, A. (2006). Effect of land–atmosphere interactions on the IHOP 24-25 May 2002 convection case. Mon. Wea. Rev., 134: 113-133.

    Article  Google Scholar 

  • Hong, S.-Y. and Lee, J.-W. (2009). Assessment of the WRF model in reproducing a flash-flood heavy rainfall event over Korea. Atmos. Res., 93: 818-831.

    Google Scholar 

  • Kalnay, E. (2003). Atmospheric Modeling, Data Assimilation and Predictability. Cambridge Univ. Press.

    Google Scholar 

  • Mohanty, U.C., Osuri, K.K., Pattanayak, Sujata and Sinha, P. (2012). An observational perspective of tropical cyclone activity over Indian seas in a warming environment. Natural Hazards, 63: 1319-1335.

    Article  Google Scholar 

  • Mohanty, U.C., Osuri, K.K., Routray, A., Mohapatra, M. and Pattanayak, S. (2010). Simulation of Bay of Bengal tropical cyclones with WRF Modeling system: Impact of Initial Value and Boundary Conditions. Marine Geodesy, 33: 294-314.

    Article  Google Scholar 

  • Newton, C.W. (1971). Global angular momentum balance: Earth torques and atmospheric fluxes. J. Atmos. Sci., 28: 1329-1341.

    Google Scholar 

  • Osuri, K.K., Mohanty, U.C., Routray, A., Makarand, A.K. and Mohapatra, M. (2012). Sensitivity of physical parameterization schemes of WRF model for the simulation of Indian seas tropical cyclones. Natural Hazards, 63: 1337-1359.

    Article  Google Scholar 

  • Pattanaik, D.R. and Rama Rao, Y.V. (2009). Track prediction of very severe cyclone ‘Nargis’ using high resolution weather research forecasting (WRF) model. J. Earth Syst. Sci., 118: 309-329.

    Google Scholar 

  • Pielke Sr., R.A., Pitman, A., Niyogi, D., Mahmood, R., McAlpine, C., Hossain, F., Goldewijk, K., Nair, U., Betts, R., Fall, S., Reichstein, M., Kabat, P. and de Noblet- Ducoudré, N. (2011). Land use/land cover changes and climate: Modeling analysis and observational evidence. Wiley Interdisciplinary Reviews: Climate Change, Invited paper (accepted) http://www.landsurface.org/publications/J113.pdf.

  • RSMC, New Delhi (2010). Report on cyclonic disturbances over the North Indian Ocean during 2009. IMD, New Delhi.

    Google Scholar 

  • Wang, Q. (2009). Boundary Layer Meteorology. Naval Postgraduate School, lecture notes for MR3413.

    Google Scholar 

  • Wieringa, J. (1986). Roughness-dependent geographical interpolation of surface wind speed averages. Quart. J.Roy. Meteor. Soc., 112: 867-889.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishna K. Osuri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Capital Publishing Company

About this chapter

Cite this chapter

Osuri, K.K., Mohanty, U.C., Routray, A. (2014). Role of Surface Roughness Length on Simulation of Cyclone Aila. In: Mohanty, U.C., Mohapatra, M., Singh, O.P., Bandyopadhyay, B.K., Rathore, L.S. (eds) Monitoring and Prediction of Tropical Cyclones in the Indian Ocean and Climate Change. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7720-0_22

Download citation

Publish with us

Policies and ethics